Influence of Initial Microstructure on Mechanical Properties of Cu Bearing Extra Low Carbon Steel Sheets

2010 ◽  
Vol 654-656 ◽  
pp. 306-309
Author(s):  
Sim Kun Min ◽  
Sung Il Kim ◽  
Jong Sang Kim ◽  
Moon Hi Hong

This paper examines the effect of initial microstructure after hot rolling on the final microstructure and mechanical properties for Cu bearing Extra Low Carbon(ELC) Steel Sheets. For this purpose, two ELC steels having different initial microstructures due to different onset time of cooling after pilot hot rolling (0.4 and 1.2 second) were selected. Mechanical properties and microstructures were analyzed as well using uni-axial tensile test, electron back-scattered diffraction (EBSD) technique following pilot rolling and continuous annealing. It has been found that the reduction of onset time of cooling gives rise to the grain refinement in hot rolled sheets. The average grain sizes of hot rolled sheetss at the onset time of 0.4 and 1.2 second are 16.7μm and 20.8 μm, respectively. In addition, the planar anisotropy of the Cu bearing ELC steel sheets has improved with reducing onset time of cooling after hot rolling. However, other mechanical properties such as strength and elongation of annealed steel are similar to both cooling condition.

2015 ◽  
Vol 812 ◽  
pp. 315-320
Author(s):  
Enikö Réka Fábián ◽  
Áron Kótai

It have been studied the cold rolling effects on the microstructure of samples prepared from Al-killed low carbon steel sheets with high coiling temperatures. The microstructure of the hot rolled steels sheet is formed from ferrite and large carbides when the coiling temperature is high. The cold rolling affects the steel mechanical and electrochemical properties due to microstructural changes. We have studied the microstructure by optical microscope and scanning electron microscope. Low angles grain boundaries and the texture of samples were studied by EBSD method.


2011 ◽  
Vol 82 (6) ◽  
pp. 734-740 ◽  
Author(s):  
Sungil Kim ◽  
Moon-Hi Hong ◽  
Kwang-Geun Chin ◽  
Jai-Hyun Kwak

1988 ◽  
Vol 52 (12) ◽  
pp. 1212-1220 ◽  
Author(s):  
Takehide Senuma ◽  
Hiroshi Yada ◽  
Ryou Shimizu ◽  
Masao Matsuo ◽  
Jirou Harase

1993 ◽  
Vol 12 (14) ◽  
pp. 1148-1150 ◽  
Author(s):  
A. Ray ◽  
D. Mukherjee ◽  
S. K. Dhua ◽  
S. Mishra ◽  
S. K. Bhattacharyya

2011 ◽  
Vol 462-463 ◽  
pp. 401-406 ◽  
Author(s):  
Jiratthanakul Noppon ◽  
Somrerk Chandra-ambhorn

Seven thousand sets of data consisting of mechanical properties, chemical compositions, and rolling parameters of industrial hot-rolled coils were analysed using multiple regression. This was to establish empirical formulas to predict mechanical properties of steel as a function of chemical compositions and rolling parameters. The empirical formulas predicting yield strength (YS), ultimate tensile strength (UTS) and percentage of elongation (EL) of low carbon steel strip were obtained, e.g. YS = 461+ 418 C + 61.6 Mn + 796 P ¬– 303 S + 159 Si + 146 Cu + 204 Ni + 49.7 Cr + 1127 V + 1072 Ti + 3674 Nb – 266 Mo – 6299 B – 76.3 Al – 557 Sn – 3.54 THK – 0.00758 WID – 0.114 FT – 0.223 CT. The rolling parameters in equation included finishing temperature (FT), coiling temperature (CT), thickness (THK) and width (WID) of strip. R-Square values for the formulas predicting YS, UTS, and EL were 82.3%, 90.1%, and 75.8% respectively. These equations were validated by using another 120 hot-rolled coils. The averages of absolute values of the difference between the predicted and actual values of YS, UTS, and EL were 9.6 MPa, 7.8 MPa, and 2.7 % respectively. Correlation of chemical compositions and rolling conditions with mechanical properties was discussed in the paper.


2010 ◽  
Vol 659 ◽  
pp. 7-12 ◽  
Author(s):  
Fábián Enikő-Réka

The cold rolling effect on the hydrogen permeability (TH value) and on the microstructure have been studied on samples prepared from Al-killed low carbon steel sheets after several cold rolling levels. The TH values of the hot rolled strips were very short, but due to the cold rolling increase exponentially. The fragmentation of large cementite phase has a significant influence on the evolution of texture during the cold rolling process. The cold deformation effects on the TH value were studied on four annealed enamelling grade steel sheets also. Depending on the carbides sizes and carbides position in ferrite grains after annealing the TH values increase or decrease after low deformation degrees, due to the steel texture modification and dislocation character. Dislocations act as major tripping site for hydrogen, if deformation degree is higher than 30%.


Sign in / Sign up

Export Citation Format

Share Document