Cold Rolling Effect on Microstructure and Mechanical Properties of Low Carbon Al-Killed Steels

2015 ◽  
Vol 812 ◽  
pp. 315-320
Author(s):  
Enikö Réka Fábián ◽  
Áron Kótai

It have been studied the cold rolling effects on the microstructure of samples prepared from Al-killed low carbon steel sheets with high coiling temperatures. The microstructure of the hot rolled steels sheet is formed from ferrite and large carbides when the coiling temperature is high. The cold rolling affects the steel mechanical and electrochemical properties due to microstructural changes. We have studied the microstructure by optical microscope and scanning electron microscope. Low angles grain boundaries and the texture of samples were studied by EBSD method.

2010 ◽  
Vol 654-656 ◽  
pp. 306-309
Author(s):  
Sim Kun Min ◽  
Sung Il Kim ◽  
Jong Sang Kim ◽  
Moon Hi Hong

This paper examines the effect of initial microstructure after hot rolling on the final microstructure and mechanical properties for Cu bearing Extra Low Carbon(ELC) Steel Sheets. For this purpose, two ELC steels having different initial microstructures due to different onset time of cooling after pilot hot rolling (0.4 and 1.2 second) were selected. Mechanical properties and microstructures were analyzed as well using uni-axial tensile test, electron back-scattered diffraction (EBSD) technique following pilot rolling and continuous annealing. It has been found that the reduction of onset time of cooling gives rise to the grain refinement in hot rolled sheets. The average grain sizes of hot rolled sheetss at the onset time of 0.4 and 1.2 second are 16.7μm and 20.8 μm, respectively. In addition, the planar anisotropy of the Cu bearing ELC steel sheets has improved with reducing onset time of cooling after hot rolling. However, other mechanical properties such as strength and elongation of annealed steel are similar to both cooling condition.


2011 ◽  
Vol 462-463 ◽  
pp. 401-406 ◽  
Author(s):  
Jiratthanakul Noppon ◽  
Somrerk Chandra-ambhorn

Seven thousand sets of data consisting of mechanical properties, chemical compositions, and rolling parameters of industrial hot-rolled coils were analysed using multiple regression. This was to establish empirical formulas to predict mechanical properties of steel as a function of chemical compositions and rolling parameters. The empirical formulas predicting yield strength (YS), ultimate tensile strength (UTS) and percentage of elongation (EL) of low carbon steel strip were obtained, e.g. YS = 461+ 418 C + 61.6 Mn + 796 P ¬– 303 S + 159 Si + 146 Cu + 204 Ni + 49.7 Cr + 1127 V + 1072 Ti + 3674 Nb – 266 Mo – 6299 B – 76.3 Al – 557 Sn – 3.54 THK – 0.00758 WID – 0.114 FT – 0.223 CT. The rolling parameters in equation included finishing temperature (FT), coiling temperature (CT), thickness (THK) and width (WID) of strip. R-Square values for the formulas predicting YS, UTS, and EL were 82.3%, 90.1%, and 75.8% respectively. These equations were validated by using another 120 hot-rolled coils. The averages of absolute values of the difference between the predicted and actual values of YS, UTS, and EL were 9.6 MPa, 7.8 MPa, and 2.7 % respectively. Correlation of chemical compositions and rolling conditions with mechanical properties was discussed in the paper.


2010 ◽  
Vol 659 ◽  
pp. 7-12 ◽  
Author(s):  
Fábián Enikő-Réka

The cold rolling effect on the hydrogen permeability (TH value) and on the microstructure have been studied on samples prepared from Al-killed low carbon steel sheets after several cold rolling levels. The TH values of the hot rolled strips were very short, but due to the cold rolling increase exponentially. The fragmentation of large cementite phase has a significant influence on the evolution of texture during the cold rolling process. The cold deformation effects on the TH value were studied on four annealed enamelling grade steel sheets also. Depending on the carbides sizes and carbides position in ferrite grains after annealing the TH values increase or decrease after low deformation degrees, due to the steel texture modification and dislocation character. Dislocations act as major tripping site for hydrogen, if deformation degree is higher than 30%.


2011 ◽  
Vol 239-242 ◽  
pp. 1092-1095
Author(s):  
Xu Tao Gao ◽  
Ai Min Zhao ◽  
Zheng Zhi Zhao ◽  
Ming Ming Zhang ◽  
Di Tang

By means of optical microscopy(OM), scanning electron microscopy(SEM),X-ray diffraction(XRD),And tensile test, Mechanical Properties of hot rolled transformation -induced plasticity (TRIP) steels which were prepared through three different coiling temperature was investigated. Result reveals that the formability index of the experimental steel descends when the coiling temperature becomes low. Different coiling temperature has greater impact on retained austenite. Amount and carbon content of retained austenite in the experimental steel get less with lower coiling temperature.


2011 ◽  
Vol 82 (6) ◽  
pp. 734-740 ◽  
Author(s):  
Sungil Kim ◽  
Moon-Hi Hong ◽  
Kwang-Geun Chin ◽  
Jai-Hyun Kwak

2017 ◽  
Vol 863 ◽  
pp. 323-327 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Panji Lukman Tirta Kusuma ◽  
Dwi Darmawan

The aimed of this research is to investigate the effect of T-Joint’s root gap on physical and mechanical properties of weld metal. Low carbon steel were joined in T-joint types using MIG (Metal Inert Gas) with variation of root gap. The root gap used were 0 mm, 3 mm and 6 mm. The physical properties examined with chemical composition, microstructure and corrosion using optical microscope. The mechanical properties were measured with respect to the strength and hardness using Universal testing machine and Vickers Microhardness. The results show that the highest value found in welds with a gap of 3 mm with a value of 163.57 MPa. Hardness value is directly proportional to the tensile strength of the material. The highest value found in welds with root gap of 3 mm, followed by root gap of 6 mm, and 0 mm Hardness values in the welding area is higher than the parent metal and HAZ because the number of Si, Mn and Cu elements in the welding metals are bigger than base metal. Weld with all variation of root gap have a good corrosion resistance because the corrosion rate in welds with various root gap have a value below 0.02 mmpy. Microstructure of weld metals were Accicular ferrite, Widmanstatten ferrite, and grain boundary ferrite, while microstructure of base metal and HAZ were ferrite and perlite.


2011 ◽  
Vol 462-463 ◽  
pp. 407-412 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

The objective of this work was to carry out tensile tests to investigate the effect of finishing temperature on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steel strips. Two hot-rolled low carbon steel strips were produced in an industrial hot rolling line by fixing a coiling temperature at 620 °C and varying finishing temperatures at 820 and 910 °C. Two testing methods were conducted. First, each of a number of samples was subjected to a given imposed strain with ex-situ imaging of scale surface after straining. Second, only one sample was strained in a test with ex-situ imaging of scale surface at every 2 mm elongation of the sample. A spallation ratio, an area where scale was spalled out and normalised by the total area observed by microscope, was plotted as a function of the imposed strain. These two methods gave the same tendency of results as follows. At a given strain, the spallation ratio of scale on steel produced using higher finishing temperature was larger. The gradient of spallation ratio with respect to the imposed strain of that scale was also steeper. This reflects the higher susceptibility of scale to spall out with increasing imposed strain. This behaviour might be related to the larger thickness of scale on steel produced using higher finishing temperature. For the second testing method, lowering the magnification of microscope to observe scale spallation from 50x to 20x increased R2 of the curve of spallation ratio versus the imposed strain, as well as improved the reproducibility of the test.


1988 ◽  
Vol 52 (12) ◽  
pp. 1212-1220 ◽  
Author(s):  
Takehide Senuma ◽  
Hiroshi Yada ◽  
Ryou Shimizu ◽  
Masao Matsuo ◽  
Jirou Harase

Sign in / Sign up

Export Citation Format

Share Document