Effect of Multiaxial Forging on Structure Evolution and Mechanical Properties of Oxygen Free Copper

2010 ◽  
Vol 667-669 ◽  
pp. 289-294 ◽  
Author(s):  
Gennady A. Salishchev ◽  
N.D. Stepanov ◽  
A.V. Kuznetsov ◽  
Sergey V. Zherebtsov ◽  
Oleg R. Valiakhmetov ◽  
...  

Evolution of micro- and macrostructure and mechanical properties of oxygen-free copper after MAF at room temperature was studied. MAF included sequential upsetting and drawing with total cycles number equal to 20 and maximum strain ≈50. MAF causes the formation of homogenous UFG structure with a grain/subgrain size of 0.3 m and fraction of high angle boundaries 50%, but macrostructure is heterogeneous. Rough shear macrobands areas of different orientation are observed. MAF results in significant strengthening from 280 MPa to 445 MPa, but samples remain very ductile even after large strains. Mechanisms of UFG structure formations during MAF are discussed.

Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


Sign in / Sign up

Export Citation Format

Share Document