Effect of Hot Rolling on Microstructure and Texture Evolution of Mg-Li Based Alloy

2011 ◽  
Vol 690 ◽  
pp. 347-350 ◽  
Author(s):  
Vinod Kumar ◽  
Govind ◽  
Rajiv Shekhar ◽  
Kantesh Balani

Mg-Li based alloy, namely Mg-9%Li-5%Al-3%Sn-1%Zn (LATZ9531) was cast and consequently hot rolled at ~573K. In the present study, as cast and hot rolled structural features has been investigated by scanning electron microscope and electron back scattered diffraction (EBSD). Phase analysis revealed presence of major Mg-rich α-phase and Li-rich β-phase. Significant crystallographic texture evolution due to conventional hot rolling process was observed due to the increased activity of the non-basal slip mode.

2011 ◽  
Vol 702-703 ◽  
pp. 85-88
Author(s):  
Vinod Kumar ◽  
R. Balasubramaniam ◽  
Rajiv Shekhar ◽  
Kantesh Balani

In the present work, Mg - 9wt. % Li - 7% wt. Al – 1 wt. % Sn (LAT971) alloy was cast and hot rolled at ~573K. Phase analysis of LAT971 revealed the presence of dual phase structure namely Mg-rich α- and Li-rich β-phase. After hot rolling, it was observed that dynamic recrystallization led to refinement of the α-phase grain structure. Significant crystallographic texture evolution, characterized by electron backscatterd diffraction, revealed increased activity of the non-basal (101 ̅0) slip plane after conventional hot rolling process.


2011 ◽  
Vol 399-401 ◽  
pp. 264-267
Author(s):  
Hai Yan Wang ◽  
Hui Ping Ren ◽  
Le Han ◽  
Zi Li Jin ◽  
Hao Sun

Microstructure of X80 pipeline steel with different hot rolling process was compared using Optical microscopy (OM), Bulk X-ray texture and micro orientation analysis was carried out by Orientation distribution function (ODF) and Electron back-scattered diffraction (EBSD), to analyze the various texture components of the pipeline steels under two different rolling processes. The results show that the final microstructures under the two schedules both present typical acicular ferrite characteristic. On the other side, the corresponding textures were found mainly comprised of two fibers in the rolling and normal direction in hot rolled X80 steel plate, there were obvious {112} , {110} , and {111} fiber, which seemed to be related with the mechanical properties anisotropy. Therefore, the influences of the microstructure and texture on the anisotropy were also discussed in this paper.


2020 ◽  
Vol 989 ◽  
pp. 699-704
Author(s):  
Nikita S. Deryabin ◽  
Sergey M. Chernyshev ◽  
Sergey N. Veselkov

Under the current conditions, the consumption of special purpose alloys or steels is growing. This is due to the development of the import substitution program. It should be noted, that such materials possess specific deformation behavior, which requires providing particular conditions of a hot rolling process. One of the characteristics of the deformation behavior is the narrow thermal plastic range. Therefore, it is necessary to conduct a hot rolling in several stages, which include interchange of heating and rolling processes. For the purpose to resolve the issue, the experience of the multilayer hot rolling of plates has been investigated where all advantages of this way of a hot rolling process were used. Based on the method of the multilayer hot rolling, the pack rolling has been developed which gives the possibility of production of hot-rolled plates from special purpose alloys or steels.


2011 ◽  
Vol 38 (11) ◽  
pp. 2397-2403 ◽  
Author(s):  
Jun Hwan Kim ◽  
Jong Hyuk Baek ◽  
Sung Ho Kim ◽  
Chan Bock Lee ◽  
Kwang Su Na ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 137-140
Author(s):  
Yao Min Zhu ◽  
Qiu Ran Gao ◽  
Feng Zhang Ren ◽  
Shi Jie Fang

The effects of the hot-rolling process on microstructures and strength were investigated for two kinds of magnesium alloy Mg-Zn-Y and Mg-Zn-Y-Nd. In comparison with the as-cast alloys, the tensile strength of Mg-Zn-Y and Mg-Zn-Y-Nd both increases 45%, whereas their elongation decreases 73%, 60% via hot-rolling process, respectively. The results show that the dynamic recrystallization process and the pining effect of I-phase during hot rolling contribute to the fine-grained structure formation. The hot-rolling process has refined the grain size greatly.


1980 ◽  
Vol 66 (6) ◽  
pp. 657-666 ◽  
Author(s):  
Yasuhiro NAKAGAWA ◽  
Tetsu SAKAMOTO ◽  
Isamu YAMAUCHI ◽  
Taketomo YAMAZAKI ◽  
Manabu UENO

2017 ◽  
Vol 750 ◽  
pp. 124-128
Author(s):  
Yunus Turen ◽  
Didem Güzel ◽  
Huseyin Zengin ◽  
Yavuz Sun ◽  
Hayrettin Ahlatci

In this study, the effect of Sn addition on corrosion resistance of as-cast and hot rolled AZ31 magnesium alloy was investigated. Sn additions were made by 0.2 wt%, 0.5 wt% and 1 wt%. An electric resistance furnace was used to produce alloys. Hot rolling process was performed at 350 °C by 40% thickness reduction at one rolling pass. Microstructure characterizations were performed by optical (OM) and scanning electron microscope (SEM). Immersion tests and electrochemical analyses were performed to investigate the corrosion resistance of the alloys. A 3.5% NaCl working solution at room temperature was used in both corrosion tests. The results showed that Sn addition decreased the primary dentrite size and restricted the growth of secondary dentritic arm. The as-cast structures transformed to dynamically recrystallized grain structures after hot-rolling process in all the alloys. Corrosion resistance of AZ31 magnesium alloy tended to decrease with Sn addition. This decrease was more clear in homogenized and hot-rolled states while there were some flactuations in as-cast states.


Sign in / Sign up

Export Citation Format

Share Document