Structures and Properties of Carbon Nanotubes/Thermosets Nanocomposites Subjected to External Electric Field during Cure Stage

2013 ◽  
Vol 743-744 ◽  
pp. 126-137 ◽  
Author(s):  
Jian Ping Yang ◽  
Jing Kuan Duan ◽  
Chang Xiu Fan ◽  
Pei De Han ◽  
Shuang Xi Shao ◽  
...  

In this investigation, the multi-walled carbon nanotubes (MWCNTs) were dispersed in an interpenetrating polymer networks (IPNs) based on acrylate and cycloaliphatic epoxy resin (CER). The influences of the external electric field on the MWCNTs dispersion and the microstructure of host matrix were evaluated by means of optical microscopy, scanning electric microscopy (SEM) and atomic force microscopy (AFM), respectively. The microscopy measurements showed that the distribution of the MWCNTs depended strongly on the properties of the applied electric field. Applying AC electric field to the liquid MWCNTs/thermoset systems during curing stage could redistribute the MWCNTs, which arranged them in chain-like structures and oriented fibrous inclusions parallel to the applied electric field. However, the similar phenomenon was not observed in DC electric field. From the observations of AFM measurement, it was found that the utilization of the external electric field resulted in the nanostructured twophase structures in the resulting MWCNTs/thermoset nanocomposites. These novel electric-field-induced morphology transformations were mainly attributed to the curing process under the applied electric fields. The relationships between the microstructures and various physical properties of nanocomposites were also presented in this paper. The resulting nanocomposites displayed the interesting dielectric properties and the thermal stability properties, which significantly depended on their special microstructures of inclusions and the host matrix.

RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 99179-99187 ◽  
Author(s):  
Xingyan Zhao ◽  
Jingjing Luo ◽  
Changjiang Fang ◽  
Jie Xiong

The surface texture of PLA/PCL nanofibers was caused by the formation of voids and elongation in electric field. The MWCNTs reduced the sizes of PCL phase in PLA matrix.


2013 ◽  
Vol 1559 ◽  
Author(s):  
Chiew Keat Lim ◽  
Yadong Wang ◽  
Shixin Wu

ABSTRACTCarbon nanotubes (CNTs) have been considered as a promising interconnect material to replace the solder bump used in the flip chip package because of their special electrical, mechanical and thermal properties, which may promote both the performance and reliability of the flip chip packaging. In this paper, electrophoretic deposition (EPD) of CNTs on substrates has been demonstrated for the interconnect application. EPD is a simple, low cost and high throughput process that is capable to produce densely packed film with good homogeneity at low temperature. By altering the electric fields and deposition time during the EPD process, the thickness of the CNTs film could be controlled. In this study, multi-walled carbon nanotubes (MWCNTs) were successfully coated on the various substrates using the EPD method. A highly uniform CNTs microstructure film with thickness over 5 µm was achieved. In addition, the selective depositions of CNTs on the pre-defined bond pads to form CNTs bumps were also accomplished. By employing typical flip-chip bonding technique, high density CNTs bumps were aligned to form a test chip/host substrate interconnects. The electrical conductivity of the CNTs interconnects was carried out using four-point probe measurement. Reliable electrical contacts with linear relationship in the current-voltage (I-V) characteristic suggesting ohmic behaviour were attained. The overall resistances extracted were also relatively low. These superior electrical properties have demonstrated that the CNTs bumps deposited using EPD method is a viable way to serve as an alternative to current metal solder interconnects material such as Sn-Pb alloys. Hence, it offers a promising interconnect application in the quest for device miniaturization in microelectronic industry.


2021 ◽  
Author(s):  
◽  
Xianming Liu

<p>Carbon nanotubes (CNTs) are a group of pure carbon solid materials that possess one-dimensional structures with diameters down to less than one nanometre. They have interesting physical properties such as very high tensile strength, metallic and semiconducting conductivity, and great potential for applications. This work investigates the synthesis, alignment and purification of multi-walled carbon nanotubes, which were characterized by Electron Microscopy, measurement of electrical properties and Raman scattering. Synthesis of multi-walled carbon nanotubes (MWNTs) was carried out by Chemical Vapour Deposition, using three different precursors: Fe(NO3)3, ferrocene and iron phthalocyanine. Vertically aligned "forests" of large numbers of MWNTs were achieved using ferrocene and iron phthalocyanine as precursors. Products from iron phthalocyanine yield more graphitic CNT nanostructures, as determined by Scanning Electron Microscopy, Transmission Electron Microscopy, Thermogravity Analysis, Raman microscopy and Energy Dispersive X-ray spectroscopy. Patterned growth of vertical MWNTs arrays with a resolution of 2 microns was also obtained, using a predeposited substrate. A High Resolution Transmission Electron Microscope was employed to investigate the inner structures of individual MWNTs, giving well-resolved images of concentric nanostructures with inter-lattice spacings of 0.34 nm. Techniques for purification and manipulation of CNTs are required before CNTs' excellent properties can be exploited. In this thesis, dielectrophoresis (DEP) under high-frequency AC voltages using an array of micron-scale electrodes was adopted as the technique to align MWNTs between these, electrodes. This technique is effective for MWNTs since their long cylindrical structure and the high mobility of their charge carriers allow them to be electrically polarised. As a result, MWNTs experience large DEP forces in an AC electric field. In our experiments, inter-digitated electrodes were used to apply the electric field to CNT suspensions in various solvents. Alignment of CNTs along their axis was achieved within the gaps between adjacent electrodes at a frequency larger than 1.1 MHz, The AC admittance changes between the electrodes were monitored and were observed to be a clear reflection of the accumulation process of MWNTs. Also it was identified that distilled water was a better solvent than ethanol and isopropanol for DEP purpose on MWNTs. In addition, a prototype device was built to selectively purify MWNTs from as-grown samples by combining DEP and re-circulating fluid flow. It was found that this device is able to decrease the impurity content of MWNTs, which is collected on the electrode array, from the suspension of as-grown samples.</p>


Sign in / Sign up

Export Citation Format

Share Document