electrical contacts
Recently Published Documents


TOTAL DOCUMENTS

1461
(FIVE YEARS 204)

H-INDEX

40
(FIVE YEARS 9)

Author(s):  
Xiaonan Zhu ◽  
Fei Yang ◽  
Haoran Wang ◽  
Siyuan Zhao ◽  
Yifei Wu ◽  
...  

Abstract Intrinsic roughness of solid surfaces causes a series of inevitable shortcomings in the use of mechanical electrical contacts, among which one of the most fatal is the repulsive electrodynamic force arising from high currents. A large contact force coming from a heavy holding mechanism helps to suppress the repulsive effect whereas the mechanism consumes energy and remains to be challenging for a compact switching device. Here, a liquid metal (LM) bridge is introduced to wet solid electrodes to eliminate contact issues. Four instability patterns induced by the electromagnetic pinch effect are identified to characterize LM bridge’s response to high currents. Simulation results reveal that an inner vortex caused by uneven distributions of current density and electrodynamic volume force leads to the rupture of a necked LM bridge. With a uniform structure, a cylindrical LM bridge is proved to be robust with respect to an impulse current higher than 10 kA, exceeding a commercial compact relay by a factor of more than 10 in terms of current withstand performance. Our research facilitates compact and energy-saving switch equipment and has a potential to realize arbitrary desired levels of high current withstand without the use of a holding mechanism. This paper also offers deep insights into the high current applications of LM from the perspective of fluid related physical mechanisms.


2021 ◽  
Vol 13 (2) ◽  
pp. 130-136
Author(s):  
Arafa S. Sobha ◽  
◽  
Amr Adela ◽  
Abdelhay Mohameda ◽  
Ali Abd El-Atya ◽  
...  

Recently, developing new alloys of Tungsten heavy (WHA) is the most important issue that researchers considered due to their wide applications of radiation protectors, vibration absorber, kinetic energy penetrators and heavy-duty electrical contacts. The present work shows 9 different Tungsten alloys with a variety of weight percent’s from "Graphene" as a Nano- particle additive. The proposed alloys produced by minimizing manufacturing parameters by applying the Taguchi technique. In addition, this work used to relate the Powder-Metallurgy (PM) parameters such as Sintering Temperature (ST) level, the weight % of the added Nano-particle of Graphene (Gw) and the type of Process Control Agent (PCA) with the mechanical characteristics such as Young’s modulus, modulus of Bulk, modulus of Shear, Poisson's number, Vickers hardness, Grain size , Relative Density. The results showed that specimen number 8 is given higher values of modulus of elasticity, reached 326.2 GPa, bulk value of 255.64 GPa, and shear value of 126.7 GPa with PM preparation condition at 15000C sintering temperature, stearic acid as a process control agent (PCA) and 0.0 %Wt. of Graphene.


2021 ◽  
Vol 21 (3) ◽  
pp. 38-42
Author(s):  
Dušan MEDVEĎ ◽  
◽  
Ján PRESADA ◽  

This paper deals with mathematical modelling of the temperature distribution in the vicinity of a direct electrical high-current contact under the action of a nominal current of 3000 A. High-current electrical contacts belong among the elements by which a large number of electrical devices are connected. They play an important role especially in the transmission and distribution system, where they have to withstand adverse weather conditions that have a significant impact on their degradation.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3191
Author(s):  
Alin Dragomir ◽  
Maricel Adam ◽  
Mihai Andrusca ◽  
Gheorghe Grigoras ◽  
Marian Dragomir ◽  
...  

The paper presents a mathematical modeling approach to determine the permanent regime temperature of an electric contact found in the supply system of the railway electric traction. Mathematical modeling is a basic procedure in the preliminary determination of parameters of interest in various fields of scientific analysis. The numerical modeling method used for determining the electric contact temperature represents the base for developing a finite-element thermal model. The simulation of the electric contact was verified by an experimental infrared investigation of an electric contact realized on a realistic laboratory setup. The results interpretation reveals a good synchronization between the calculated, simulated and measured temperatures.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 49-57
Author(s):  
D. Y. Gulpa ◽  
I. I. Kuzmar ◽  
L. K. Kushner ◽  
N. V. Dezhkunov ◽  
A. A. Khmyl

Solderable tin-base alloy coatings are widely used when assembling electronic products. The reorientation of production to lead-free technologies sets the task of developing new technological processes for the formation of coatings for electrical contacts with stable electrical properties, high soldering ability, which lasts for a long time. The features of the process of electrodeposition of coatings with a tin-copper alloy were experimentally investigated and the regularities of the influence of the electrolyte composition, current density, and ultrasound intensity on the cathode current efficiency of the alloy, the deposition rate, elemental composition, structure and functional properties of the precipitation were established. For sonochemical treatment an experimental setup developed at Research Laboratory 5.2 of BSUIR, which makes it possible to vary the intensity of ultrasonic vibrations in the range of 0.058– 1.7 W/cm2 , was used. It has been established that the use of ultrasound changes the formation mechanism of the electrochemical alloy, reduces cathodic polarization, increases the value of the limiting current and makes it possible to control the composition and structure of the precipitates. With an increase in the intensity from 0.12 to 0.95 W/cm2  the amount of copper in the coating increases by 4.5 times. The spreading coefficient of the solder is 92.59–98.44 %.


2021 ◽  
pp. 212-218
Author(s):  
B.K. Li ◽  
Z.D. Liu ◽  
S.Y. Guo ◽  
L. Chen ◽  
J.X. Li ◽  
...  

2021 ◽  
Vol 2094 (4) ◽  
pp. 042044
Author(s):  
A V Egorov ◽  
Yu F Kaizer ◽  
A V Lysyannikov ◽  
A V Kuznetsov ◽  
Yu N Bezborodov ◽  
...  

Abstract The electric sliding contact in the brush mechanism is one of the most unreliable components of electric machines of alternating and direct current and other electrical equipment in which the transmission of electric current is carried out using sliding contacts that require fairly frequent maintenance and can be a source of sparking. It is possible to increase the reliability and efficiency of electric machines with sliding electric contacts by replacing the dry friction mode with the liquid friction mode in the sliding electric contact. The most appropriate material for use in the construction of a liquid metal sliding contact is gallium. When replacing the sliding electrical contacts of asynchronous electric machines with a phase rotor from traditional solid to liquid metal gallium, it is possible to increase their power up to 1.4 times due to the availability of a higher thermal operating mode.


Sign in / Sign up

Export Citation Format

Share Document