The Influence of Electric Fields on Self-Organization Processes in an Ultradispersed Solution of Multi-Walled Carbon Nanotubes

2020 ◽  
Vol 65 (2) ◽  
pp. 254-263
Author(s):  
A. P. Kuz’menko ◽  
Tet P’o Naing ◽  
A. E. Kuz’ko ◽  
M’o Min Tan
2013 ◽  
Vol 1559 ◽  
Author(s):  
Chiew Keat Lim ◽  
Yadong Wang ◽  
Shixin Wu

ABSTRACTCarbon nanotubes (CNTs) have been considered as a promising interconnect material to replace the solder bump used in the flip chip package because of their special electrical, mechanical and thermal properties, which may promote both the performance and reliability of the flip chip packaging. In this paper, electrophoretic deposition (EPD) of CNTs on substrates has been demonstrated for the interconnect application. EPD is a simple, low cost and high throughput process that is capable to produce densely packed film with good homogeneity at low temperature. By altering the electric fields and deposition time during the EPD process, the thickness of the CNTs film could be controlled. In this study, multi-walled carbon nanotubes (MWCNTs) were successfully coated on the various substrates using the EPD method. A highly uniform CNTs microstructure film with thickness over 5 µm was achieved. In addition, the selective depositions of CNTs on the pre-defined bond pads to form CNTs bumps were also accomplished. By employing typical flip-chip bonding technique, high density CNTs bumps were aligned to form a test chip/host substrate interconnects. The electrical conductivity of the CNTs interconnects was carried out using four-point probe measurement. Reliable electrical contacts with linear relationship in the current-voltage (I-V) characteristic suggesting ohmic behaviour were attained. The overall resistances extracted were also relatively low. These superior electrical properties have demonstrated that the CNTs bumps deposited using EPD method is a viable way to serve as an alternative to current metal solder interconnects material such as Sn-Pb alloys. Hence, it offers a promising interconnect application in the quest for device miniaturization in microelectronic industry.


2013 ◽  
Vol 743-744 ◽  
pp. 126-137 ◽  
Author(s):  
Jian Ping Yang ◽  
Jing Kuan Duan ◽  
Chang Xiu Fan ◽  
Pei De Han ◽  
Shuang Xi Shao ◽  
...  

In this investigation, the multi-walled carbon nanotubes (MWCNTs) were dispersed in an interpenetrating polymer networks (IPNs) based on acrylate and cycloaliphatic epoxy resin (CER). The influences of the external electric field on the MWCNTs dispersion and the microstructure of host matrix were evaluated by means of optical microscopy, scanning electric microscopy (SEM) and atomic force microscopy (AFM), respectively. The microscopy measurements showed that the distribution of the MWCNTs depended strongly on the properties of the applied electric field. Applying AC electric field to the liquid MWCNTs/thermoset systems during curing stage could redistribute the MWCNTs, which arranged them in chain-like structures and oriented fibrous inclusions parallel to the applied electric field. However, the similar phenomenon was not observed in DC electric field. From the observations of AFM measurement, it was found that the utilization of the external electric field resulted in the nanostructured twophase structures in the resulting MWCNTs/thermoset nanocomposites. These novel electric-field-induced morphology transformations were mainly attributed to the curing process under the applied electric fields. The relationships between the microstructures and various physical properties of nanocomposites were also presented in this paper. The resulting nanocomposites displayed the interesting dielectric properties and the thermal stability properties, which significantly depended on their special microstructures of inclusions and the host matrix.


NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550112
Author(s):  
Jiang Zhao ◽  
Jing Chen ◽  
Pengcheng Zhang ◽  
Haofeng Yu ◽  
Jie Chen

Multi-walled carbon nanotubes (MWCNTs) produced by chemical vapor deposition (CVD) are the most common commercial products at extremely low price in the market. However, due to the inherent drawbacks of CVD surroundings at temperature below [Formula: see text][Formula: see text]1000[Formula: see text]C, CVD-grown nanotubes usually have very disordered structure, resulting in most of their properties being much below expectations. Herein, we present a simple and energy-efficient method for improving rapidly the structure of CVD-grown MWCNTs via a drastic thermite reaction process. Direct observations from scan electron microscope (SEM) and transmission electron microscope (TEM) images, decrease of [Formula: see text] ratios in Raman spectra, increase of the starting oxidation temperatures observed in thermogravimetric analysis (TGA), decrease of the volumetric electrical resistivity and decrease of the turn-on electric fields from 3.64 to 2.88[Formula: see text]V/[Formula: see text]m in field emission measurements suggest that the graphitization of MWCNTs can be effectively enhanced and the structure of nanotubes becomes more ordered after the drastic thermite reaction process.


2020 ◽  
Vol 6 (1) ◽  
pp. 17-23
Author(s):  
Alexander P. Kuzmenko ◽  
Thet Phyo Naing ◽  
Andrey E. Kuzko ◽  
Alexey V. Kochura ◽  
Myo Min Than ◽  
...  

Specific features and regularities of self-assembly and self-organization of multi-walled carbon nanotubes (MWCNT) have been studied for diffusion-limited conditions (method of drops) in water-based (deionized water) colloidalal solutions with aerosil exposed to DC electric fields with magnitudes of 15 to 25 V. Studies of hierarchical structure formation during drop evaporation in uniform electric fields have revealed the formation of 40–120 nm sized linear piecewise formations, 25–45 nm sized fractal structures and 250 nm sized diffuse structures from MWCNT – COOH + aerosil + H2Odw. The structures have been studied using confocal microscopy, X-ray diffraction, Raman scattering, atomic force microscopy, IR spectroscopy and scanning electron microscopy. The sizes of the observed micro- and nanostructures decrease following the hyperbolic law d = 1/U in the approximation d → 2R, their growth rate increasing as U2. We show that intense ultrasonication of functionalized MWCNT – COOH + aerosil + H2Odw in colloidal solutions causes the formation of the so-called “breathing" modes in axis centered single-walled carbon nanotubes. This is confirmed by short-wave Raman scattering excitation and enables the existence of both combined sp2-hybridization types with π- and σ- carbon bonds and the metallic and semiconductor conductivity types in the material thus showing good promise of these structures for nanoelectronics.


2019 ◽  
Vol 18 ◽  
pp. 153303381987691 ◽  
Author(s):  
Yan Mi ◽  
Pan Li ◽  
Quan Liu ◽  
Jin Xu ◽  
Qiyu Yang ◽  
...  

Multi-walled carbon nanotubes with excellent electrical properties and high aspect ratios can reduce the high field strength required to kill cancer cells in vitro with nanosecond pulsed electric fields. For the first time, this article systematically and comprehensively evaluates the effects of various parameters of nanosecond pulsed electric fields combined with multi-walled carbon nanotubes on cell viability. The effects of field strength, E (2-10 kV/cm); pulse width, τ (100-500 ns); and pulse number, N (5-260) on the viability of A375 human skin cancer cells in the presence of multi-walled carbon nanotubes are studied using the Cell Counting Kit 8 assay. Based on a logistic model, the relationship between cell viability and various parameters is obtained using 1-dimensional nonlinear fitting. The results show a sigmoid-type variation in cell viability with field strength, pulse width, or pulse number. Multivariate scaling analysis shows that the relationship between cell viability and the pulse energy density σE2 τN can be described as a sigmoid type. The introduction of multi-walled carbon nanotubes does not affect the above rules but significantly enhances the killing effect of nanosecond pulsed electric fields, which could effectively improve the electrical safety of nanosecond pulsed electric fields for the treatment of tumors.


2007 ◽  
Author(s):  
Sungryul Yun ◽  
Jung Hwan Kim ◽  
Sumanth Banda ◽  
Zoubeida Ounaies ◽  
Jaehwan Kim

Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Sign in / Sign up

Export Citation Format

Share Document