Ti and Zr Transition Metals Effect in the D03 Fe3Al by Ab Initio Study Approach

2014 ◽  
Vol 783-786 ◽  
pp. 1640-1645
Author(s):  
Jean Marc Raulot ◽  
S. Chentouf ◽  
T. Grosdidier ◽  
Hafid Aourag

The effect of the Ti and Zr transition metals on the D03-Fe3Al intermetallic compounds has been investigated by means of ab initio Pseudo Potentials numerical simulations based on Density Functional Theory. Two main issues will be addressed the understanding of the role of these two transition metals in terms of stability of the bulk at the light of their site preference in the D03-Fe3Al structure the behaviour of Ti and Zr transition metals in the sigma 5 (310) [001] grain boundary and their effect on the structural stability of this interface. An important issue when studying these aspects is to take into accounts the effect of temperature. This requires a molecular dynamics treatment of the atoms in the supercell. The technique known as ab initio molecular dynamics (AIMD) solves these problems by combining ‘on the fly’ electronic structure calculations with finite temperature dynamics. Thus, our study was conducted both using the conventional static ab initio calculations (0K) as well as by taking into account the effect of temperature (Ab Initio Molecular Dynamics).

Author(s):  
Alberto Rodríguez-Fernández ◽  
Laurent Bonnet ◽  
Pascal Larrégaray ◽  
Ricardo Díez Muiño

The dissociation process of hydrogen molecules on W(110) was studied using density functional theory and classical molecular dynamics.


2019 ◽  
Author(s):  
Rocco Peter Fornari ◽  
Piotr de Silva

Directly linked polyanthraquinones have relatively large electronic couplings between charge-localized states despite near-orthogonality of the monomer units. By using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations, we investigate this unusual coupling mechanism and show that this is due to strong lone pair-pi interactions, which are maximized around orthogonal conformations. We find that such materials are largely resilient to dynamic disorder and are promising for organic electronics applications.


2017 ◽  
Vol 19 (31) ◽  
pp. 20551-20558 ◽  
Author(s):  
Raúl Guerrero-Avilés ◽  
Walter Orellana

The energetics and diffusion of water molecules and hydrated ions (Na+, Cl−) passing through nanopores in graphene are addressed by dispersion-corrected density functional theory calculations and ab initio molecular dynamics (MD) simulations.


2018 ◽  
Vol 20 (36) ◽  
pp. 23717-23725 ◽  
Author(s):  
Vesa Hänninen ◽  
Garold Murdachaew ◽  
Gilbert M. Nathanson ◽  
R. Benny Gerber ◽  
Lauri Halonen

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document