Phase-Field Simulation of Binary Alloy Crystal Growth Prepared by a Fluid Flow

2015 ◽  
Vol 833 ◽  
pp. 11-14
Author(s):  
Ming Chen ◽  
Xiao Dong Hu ◽  
Dong Ying Ju

Phase field method (PFM) was employed to investigate the crystal growth of Mg-Al alloy, on the basis of binary alloy model, the fluid field equation was coupled into the phase-field models, and the marker and cell (MAC) method was used in the numerical calculation of micro structural pattern. In the cast process, quantitative comparison of different anisotropy values that predicted the dendrite evolution were discussed in detail, and when the fluid flow rate reaches a high value, we can see the remelting of dendrite arms.

2013 ◽  
Vol 470 ◽  
pp. 100-103
Author(s):  
Dong Sheng Chen ◽  
Ming Chen ◽  
Rui Chang Wang

PFM (phase field method) was employed to study microstructure evolution, and considering the effect of solute concentration to the undercooling, we developed a phase field model for binary alloy on the basis of pure substance model. In the paper, the temperature field and solute field were coupled together in the phase field model to calculate the crystal growth of magnesium alloy in directional solidification. The simulation results showed a non-planar crystal growth of planar to cellular to columnar dendrite, the comparison of different dendrite patterns were carried out in the numerical simulation, and with the increasing of the anisotropy, the second dendrite arms became more developed.


2012 ◽  
Vol 571 ◽  
pp. 3-7
Author(s):  
Jing Liu ◽  
Ying Shuo Wang

The phase field method is effective in simulating the formation of solidification microstructure. Based on the phase field models of coupling flow field and noise field proposed by Tong and Beckermann, using finite difference method to solve control equation, apartly simulating the dendritic morphology under the condition of convection or none convection, and drawing the following conclusions after comparing the results: in the side, the dendrite will no longer be symmetrical under the condition of countercurrent and downstream, the dendrite tip grows faster with countercurrent than that of the latter, while the dendrite grows almost naturally in the vertical direction of convection.


2019 ◽  
Vol 22 (4) ◽  
pp. 367-374
Author(s):  
Yu. A. Lebedinsky ◽  
A. M. Branovitsky ◽  
V. A. Dement'ev

The primary crystal growth in a binary melt is modeled on the base of the phase field method with approximate consideration of melt stirring. Changes in the second component (solute) concentration near a solidification area during stirring are considered as a main reason of modification of dendritic morphology of crystals. An effect of stirring is approximately simulated as forced changes in the solute concentration by either resetting to initial concentration, or averaging concentration. Dendritic morphology is shown to change to rosette and then to globular one depending on space parameters of forced changes.


2014 ◽  
Vol 716-717 ◽  
pp. 133-136
Author(s):  
Fang Hui Liu ◽  
Ming Gao

In order to study the growth process and morphology of dendrite directly, a phase field model of binary alloy was established. In this model the order parameter equation was coupled with the temperature field and the solute field. The growing processes and morphology of dendrite were simulated by using this phase field model. Through analyzing the results, we discussed the effects of anisotropic strength and temperature gradient on dendrite morphology. The results shows that with the increasing of anisotropic strength, the dendrite growth rate of the dendrite will increase and the secondary branches appear more clearly. Besides, the temperature gradient has influence on the appearance of secondary arms during the dendrite growing. With the increase of temperature gradient, the size of secondary dendrite arms increase.


2013 ◽  
Vol 842 ◽  
pp. 57-60 ◽  
Author(s):  
Yan Bo Dong ◽  
Ming Chen ◽  
Xi Wang

The competitive growth of multiple dendrites and crystal growth of directional solidification in a Mg-Al binary alloy were simulated using phase-field model, and the effect of undercooling value on the microstructural dendritic growth pattern in directional solidification process was studied in the paper. The simulation results showed the impingement of the adjacent grains, which made the dendrite growth inhibited in the competitive growth of multiple dendrites, and in directional solidification process, quantitative comparison of different undercooling values that predicted the columnar dendrite evolution were carried out. With the increasing of the undercooling value, the dendrite tip radius and second dendrite arms became smaller, and the crystal structure is more uniform and dense.


2020 ◽  
Vol 29 (2) ◽  
pp. 028103
Author(s):  
Zhaodong Zhang ◽  
Yuting Cao ◽  
Dongke Sun ◽  
Hui Xing ◽  
Jincheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document