A Fiber-Optic Bending Sensor for the Vibration Monitoring of CNC Face-Milling Machine

2009 ◽  
Vol 147-149 ◽  
pp. 627-632
Author(s):  
İsmet Gücüyener ◽  
Erdal Emel

Vibration measurement of CNC milling is one of the used techniques for prediction of tool wear. Monitoring of tool wear is very important since a worn tool will affect machine and workpiece either. We developed a fiber-optic sensor for spindle vibration of CNC face-milling machine. The sensor is based on monitoring loss of light from the fiber core. For this sensor a laser light transmitter circuit, a sense plane construction, and a light receiver circuit are designed. Designed fiber-optic sensor is tested on Taksan TMC 650V face-milling machine. Obtained signals from this sensor is investigated in time domain and frequency domain and showed that it is valuable to tool ware monitoring.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2528 ◽  
Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes, in addition to immunity to electromagnetic interference and chemical corrosions. Thus, the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within (−6°, 4°), and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


2006 ◽  
Vol 326-328 ◽  
pp. 1351-1354
Author(s):  
Qi Rong Zhu ◽  
Ru Hua Fang ◽  
Guo Biao Yang ◽  
Wei Ming Zeng

The fiber optic sensor measuring system based on the Mech-Zehnder interferometry is developed in the paper. The system can be used for the strain and vibration measurement of engineering structure, and has the advantages: convenient adjusting, stable performance and strong ability of anti-interference, etc. Therefore the fiber optic sensor has been widely used in the engineering field. First the system is introduced into measuring the frequency and amplitude of the vibration subjected to force of the FRP-concrete beam. The fiber optic sensor measuring system and the electronic measuring system are synchronous used for the measurement. The analysis results of fiber optic sensor measurement approximate to the results of electronic strain gauge. Then the system is introduced into experimental stress analysis on the gas pipe, good results is obtained too. The paper provides new technical equipment for the experimental testing of various engineering structure using fiber optic sensor, also establishes the technical foundation of the research of smart structure.


Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes in addition to immunity to electromagnetic interference and chemical corrosions. Thus the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within ±5°, and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


1995 ◽  
Author(s):  
Arkady S. Voloshin ◽  
Lei Han ◽  
John P. Coulter

Sign in / Sign up

Export Citation Format

Share Document