Piperazinediium Diselenatohexaaquacobaltate(II) Dihydrate (C4H12N2)[Co(SeO4)2(H2O)4]·2H2O

2012 ◽  
Vol 194 ◽  
pp. 171-174 ◽  
Author(s):  
Nouha Loulou Nkhili ◽  
Walid Rekik ◽  
Houcine Naili ◽  
Tahar Mhiri ◽  
Thierry Bataille

The new hybrid material, (C4H12N2)[Co(H2O)4(SeO4)2]·2H2O, has been synthesized by the slow evaporation method at room temperature and crystallographically characterized. It crystallizes in the monoclinic system, space group P21 /n. The crystal structure of this compound consists of transition metal, Co(II), octahedrally coordinated by four water molecules and two selenate groups forming the [Co(H2O)4(SeO4)2]2-anions, water molecules and piperazinediium cations (C4H12N2)2+linked together by two types of hydrogen bonds, OW–H…O and N–H…O.

2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


2015 ◽  
Vol 71 (11) ◽  
pp. 1352-1355
Author(s):  
Mohamed El Mehdi Touati ◽  
S. Elleuch ◽  
Habib Boughzala

A new organic–inorganic hybrid material, {(C7H10NO)[BiI4]·2H2O}n, has been synthesized by slow evaporation of an aqueous solution at room temperature. The anionic sublattice of the crystal is built up by [BiI6] octahedra sharing edges. The resulting zigzag chains extend along thea-axis direction and are arranged in a distorted hexagonal rod packing. Thep-anisidinium cations and the water molecules are located in the voids of the anionic sublattice. The cations are linked to each other through N—H...O hydrogen bonds with the water molecules, and also through weaker N—H...I interactions to the anionic inorganic layers.


2014 ◽  
Vol 70 (9) ◽  
pp. o924-o925 ◽  
Author(s):  
Raúl Castañeda ◽  
Sofia A. Antal ◽  
Sergiu Draguta ◽  
Tatiana V. Timofeeva ◽  
Victor N. Khrustalev

In an attempt to grow 8-hydroxyquinoline–acetaminophen co-crystals from equimolar amounts of conformers in a chloroform–ethanol solvent mixture at room temperature, the title compound, C9H7NO, was obtained. The molecule is planar, with the hydroxy H atom forming an intramolecular O—H...N hydrogen bond. In the crystal, molecules form centrosymmetric dimersviatwo O—H...N hydrogen bonds. Thus, the hydroxy H atoms are involved in bifurcated O—H...N hydrogen bonds, leading to the formation of a central planar four-membered N2H2ring. The dimers are bound by intermolecular π–π stacking [the shortest C...C distance is 3.2997 (17) Å] and C—H...π interactions into a three-dimensional framework. The crystal grown represents a new monoclinic polymorph in the space groupP21/n. The molecular structure of the present monoclinic polymorph is very similar to that of the orthorhombic polymorph (space groupFdd2) studied previously [Roychowdhuryet al.(1978).Acta Cryst.B34, 1047–1048; Banerjee & Saha (1986).Acta Cryst.C42, 1408–1411]. The structures of the two polymorphs are distinguished by the different geometries of the hydrogen-bonded dimers, which in the crystal of the orthorhombic polymorph possess twofold axis symmetry, with the central N2H2ring adopting a butterfly conformation.


1999 ◽  
Vol 54 (6) ◽  
pp. 747-750 ◽  
Author(s):  
Joachim Pickardt ◽  
Pirka Wischlinski

Crystals o f the complex [K (benzo-18-crown-6][Zn(CN)3] H2O were obtained from a solution o f Zn(CN)2, KCN, and benzo-18-crown-6 in water/methanol. The compound crystallizes in the triclinic space group PI (no. 2),: Z = 2, a = 818,6(5), b = 1236,7(8), c = 1359,6(6) pm, a = 67,02(4), β = 87,38(4), 7 = 75,46(5). Each Zn atom is bonded to one bridging cyanide ion to give chains -Zn(CN)Zn -, and to two terminal CN groups. The N atom of one of the terminal CN groups interacts with a potassium ion o f the [K (benzo-18-crown-6)]+ unit. The coordination spheres of the K ions are completed by water molecules, which in turn form hydrogen bonds to N atoms of terminal CN groups of neighbouring chains, whereby puckered sheets are formed


Author(s):  
Ghaleb Alhakmi ◽  
Abderrazzak Assani ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The title compound, Mn2Zn(PO4)2·H2O, was obtained under hydrothermal conditions. The structure is isotypic with other transition metal phosphates of the typeM3−xM′x(PO4)2·H2O, but shows no statistical disorder of the three metallic sites. The principal building units are distorted [MnO6] and [MnO5(H2O)] octahedra, a distorted [ZnO5] square pyramid and two regular PO4tetrahedra. The connection of the polyhedra leads to a framework structure. Two types of layers parallel to (-101) can be distinguished in this framework. One layer contains [Zn2O8] dimers linked to PO4tetrahedraviacommon edges. The other layer is more corrugated and contains [Mn2O8(H2O)2] dimers and [MnO6] octahedra linked together by common edges. The PO4tetrahedra link the two types of layers into a framework structure with channels parallel to [101]. The H atoms of the water molecules point into the channels and form O—H...O hydrogen bonds (one of which is bifurcated) with framework O atoms across the channels.


1975 ◽  
Vol 53 (15) ◽  
pp. 2345-2350 ◽  
Author(s):  
Monique Authier-Martin ◽  
André L. Beauchamp

The title compound belongs to space group P21/c with a = 23.99(1), b = 4.245(2), c = 25.98(1) Å, β = 117.58(7)°, and Z = 8. The structure was solved by the heavy-atom method and refined by block-diagonal least squares on 2589 independent observed reflections. All non-hydrogen atoms were refined anisotropically and some of the hydrogen atoms were located but their parameters were not refined. The final values of R and Rw were 0.042 and 0.047, respectively.The two nonequivalent mercury atoms have very similar environments. Two short Hg—Cl bonds (2.34–2.38 Å) at ∼ 165° define a quasi-molecular HgCl2 unit. Overall octahedral coordination is completed with two chloride ions at 2.76–2.84 Å and two chlorine atoms at 3.19–3.26 Å on neighboring HgCl2 quasi-molecules. HgCl6 octahedra share edges to form twofold ribbons in the b direction. This pattern of octahedra is identical with the onereported for β-NH4HgCl3. The cations are pairs of N(1)-protonated adenine molecules linked by two N(10)—H(10)… N(7) hydrogen bonds and stacked in the b direction. Water molecules act as acceptors in moderately strong hydrogen bonds with acidic protons H(1) and H(9) of adeninium ions. Other generally weaker hydrogen bonds exist between the various parts of the structure.


1996 ◽  
Vol 51 (8) ◽  
pp. 1137-1140 ◽  
Author(s):  
Michael Feist ◽  
Sergej Trojanov ◽  
Erhard Kemnitz

(davaH2)[FeCl4]2 crystallizes at room temperature from aqueous solutions of 2,4-diaminovinamidinium hydrochloride, (davaH)Cl, and FeCl3 in 3M HCl in the orthorhombic space group Pca21 with a=14.108(3), b = 16.502(3), c = 18.919(4) Å, Z=8. The structure consists of diprotonated tricyclic (davaH2)2+ cations and slightly distorted tetrahedral [FeCl4]- anions. The cations are bent around the central heptacycle forming boat-like units. One of the two independent cations is disordered between two positions. Some interatomic distances N···Cl are interpreted in terms of N-H···Cl hydrogen bonds.


2021 ◽  
Vol 77 (3) ◽  
pp. 144-151
Author(s):  
Matthias Weil ◽  
Uwe Kolitsch

The crystal structure of the mineral kröhnkite, Na2Cu(SO4)2(H2O)2, contains infinite chains composed of [CuO4(OH2)2] octahedra corner-linked with SO4 tetrahedra. Such or similar tetrahedral–octahedral `kröhnkite-type' chains are present in the crystal structures of numerous compounds with the composition AnM(XO4)2(H2O)2. The title compounds, (NH4)Mg(HSO4)(SO4)(H2O)2, ammonium magnesium hydrogen sulfate sulfate dihydrate, and NaSc(CrO4)2(H2O)2, sodium scandium bis(chromate) dihydrate, are members of the large family with such kröhnkite-type chains. At 100 K, (NH4)Mg(HSO4)(SO4)(H2O)2 has an unprecedented triclinic crystal structure and contains [MgO4(OH2)2] octahedra linked by SO3(OH) and SO4 tetrahedra into chains extending parallel to [\overline{1}10]. Adjacent chains are linked by very strong hydrogen bonds between SO3(OH) and SO4 tetrahedra into layers parallel to (111). Ammonium cations and water molecules connect adjacent layers through hydrogen-bonding interactions of medium-to-weak strength into a three-dimensional network. (NH4)Mg(HSO4)(SO4)(H2O)2 shows a reversible phase transition and crystallizes at room temperature in structure type E in the classification scheme for structures with kröhnkite-type chains, with half of the unit-cell volume for the resulting triclinic cell, and with disordered H atoms of the ammonium tetrahedron and the H atom between two symmetry-related sulfate groups. IR spectroscopic room-temperature data for the latter phase are provided. Monoclinic NaSc(CrO4)2(H2O)2 adopts structure type F1 in the classification scheme for structures with kröhnkite-type chains. Here, [ScO4(OH2)2] octahedra (point group symmetry \overline{1}) are linked by CrO4 tetrahedra into chains parallel to [010]. The Na+ cations (site symmetry 2) have a [6 + 2] coordination and connect adjacent chains into a three-dimensional framework that is consolidated by medium–strong hydrogen bonds involving the water molecules. Quantitative structural comparisons are made between NaSc(CrO4)2(H2O)2 and its isotypic NaM(CrO4)2(H2O)2 (M = Al and Fe) analogues.


2019 ◽  
Author(s):  
Roberto Köferstein

Blue single crystals of Cu[μ3-O3P(CH2)2COOH].2H2O (1) and Cu[(RS)-μ3-O3PCH(C2H5)COOH].3H2O (2) have been prepared in aqueous Cu2+-solutions (pH = 2.5–3.5) containing 3-phosphonopropionic acid (1) and (RS)-2-phosphonobutyric acid (2), respectively. 1: Space group Pbca (no. 61) with a = 812.5(2), b = 919.00(9), c = 2102.3(2) pm. Cu2+ is five-fold coordinated by three oxygen atomsstemming from [O3P(CH2)2COOH]2– anions and two water molecules. The Cu-O bond lengths range from194.0(3) to 231.8(4) pm. The connection between the [O3P(CH2)2COOH]2– anions and the Cu2+ cations yields apolymeric structure with layers parallel to (001). The layers are linked by hydrogen bonds. 2: Space group Pbca(no. 61) with a = 1007.17(14), b = 961.2(3), c = 2180.9(4) pm. The copper cations are surrounded by five oxygen atoms in a square pyramidal fashion with Cu-O bonds between 193.6(4) and 236.9(4) pm. The coordination between [O3PCH(C2H5)COOH]2- and Cu2+ results in infinite puckered layers parallel to (001). The layers are not connected by any hydrogen bonds. Each layer contains both R and S isomers of the [O3PCH(C2H5)COOH]2-dianion. Water molecules not bound to Cu2+ are intercalated between the layers.UV/Vis spectra suggest three d-d transition bands at 743, 892, 1016 nm for 1 and four bands at 741, 838, 957and 1151 nm for 2, respectively. Magnetic measurements suggest a weak antiferromagnetic coupling betweenCu2+ due to a super-superexchange interaction. Thermoanalytical investigations in air show that the compounds are stable up to 95 °C (1) and 65 °C (2), respectively.


2010 ◽  
Vol 65 (7) ◽  
pp. 907-916 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Falk Lissner ◽  
Thomas Schleid ◽  
Willi Kantlehner

Dicationic N,N´,N´,N´´,N´´-pentasubstituted guanidinium dichlorides 4a, b are obtained from the chloroformamidinium salt 2 and diamines 3a, b. N-[2-(Dimethylammonio)ethyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5a) and N-[3-(dimethylammonio)propyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5b) were synthesized from 4a, b by anion metathesis with one equivalent of sodium tetraphenylborate. The thermal properties of the salts 5a, b were studied by means of DSC methods, and their crystal structures were determined by single-crystal X-ray diffraction analysis. For 5a a solid-solid phase transition is observed at −156 ◦C to a low-temperature structure. The room-temperature modification (α-5a) crystallizes in the centrosymmetric orthorhombic space group Pbca (a = 13.1844(4), b = 13.8007(4), c = 34.7537(11) A° ).The guanidinium ions are interconnected via chloride ions through bridging N-H· · ·Cl hydrogen bonds, providing isolated units. The tetraphenylborate ions show some dynamic disordering in the crystal structure. The low-temperature modification (β -5a) also crystallizes orthorhombically, but in the non-centrosymmetric space group Pna21 (a = 13.1099(4), b = 69.1810(11), c = 13.5847(5) A° ) and consists of four crystallographically independent cations and anions in the unit cell. Compared with the room-temperature structure, a similar N-H· · ·Cl hydrogen bond pattern is observed in the β -phase, but the tetraphenylborate ions are now completely ordered. 5b crystallizes in the monoclinic space group P21/c (a = 10.8010(3), b = 14.1502(5), c = 20.9867(9) A° , β = 94.322(1)◦). In the crystal structure the guanidinium ions are linked via chloride ions through N-H· · ·Cl hydrogen bonds, but in contrast to 5a two infinite strands are formed along the a axis with the tetraphenylborate ions interspersed between them for charge compensation.


Sign in / Sign up

Export Citation Format

Share Document