Synthese und Kristallstrukturen von N-[ω-(Dimethylammonio)alkyl]- N´,N´,N´´,N´´-tetramethylguanidinium-chlorid-tetraphenylboraten / Synthesis and Crystal Structures of N-[ω-(Dimethylammonio)alkyl]-N´,N´,N´´,N´´- tetramethylguanidinium Chloride Tetraphenylborates

2010 ◽  
Vol 65 (7) ◽  
pp. 907-916 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Falk Lissner ◽  
Thomas Schleid ◽  
Willi Kantlehner

Dicationic N,N´,N´,N´´,N´´-pentasubstituted guanidinium dichlorides 4a, b are obtained from the chloroformamidinium salt 2 and diamines 3a, b. N-[2-(Dimethylammonio)ethyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5a) and N-[3-(dimethylammonio)propyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5b) were synthesized from 4a, b by anion metathesis with one equivalent of sodium tetraphenylborate. The thermal properties of the salts 5a, b were studied by means of DSC methods, and their crystal structures were determined by single-crystal X-ray diffraction analysis. For 5a a solid-solid phase transition is observed at −156 ◦C to a low-temperature structure. The room-temperature modification (α-5a) crystallizes in the centrosymmetric orthorhombic space group Pbca (a = 13.1844(4), b = 13.8007(4), c = 34.7537(11) A° ).The guanidinium ions are interconnected via chloride ions through bridging N-H· · ·Cl hydrogen bonds, providing isolated units. The tetraphenylborate ions show some dynamic disordering in the crystal structure. The low-temperature modification (β -5a) also crystallizes orthorhombically, but in the non-centrosymmetric space group Pna21 (a = 13.1099(4), b = 69.1810(11), c = 13.5847(5) A° ) and consists of four crystallographically independent cations and anions in the unit cell. Compared with the room-temperature structure, a similar N-H· · ·Cl hydrogen bond pattern is observed in the β -phase, but the tetraphenylborate ions are now completely ordered. 5b crystallizes in the monoclinic space group P21/c (a = 10.8010(3), b = 14.1502(5), c = 20.9867(9) A° , β = 94.322(1)◦). In the crystal structure the guanidinium ions are linked via chloride ions through N-H· · ·Cl hydrogen bonds, but in contrast to 5a two infinite strands are formed along the a axis with the tetraphenylborate ions interspersed between them for charge compensation.

1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


Author(s):  
Christoph Krebs ◽  
Inke Jess ◽  
Christian Näther

Single crystals of the high-temperature form I of [Co(NCS)2(DMAP)2] (DMAP = 4-dimethylaminopyridine, C7H10N2) were obtained accidentally by the reaction of Co(NCS)2 with DMAP at slightly elevated temperatures under kinetic control. This modification crystallizes in the monoclinic space group P21/m and is isotypic with the corresponding Zn compound. The asymmetric unit consists of one crystallographically independent Co cation and two crystallographically independent thiocyanate anions that are located on a crystallographic mirror plane and one DMAP ligand (general position). In its crystal structure the discrete complexes are linked by C—H...S hydrogen bonds into a three-dimensional network. For comparison, the crystal structure of the known low-temperature form II, which is already thermodynamically stable at room temperature, was redetermined at the same temperature. In this polymorph the complexes are connected by C—H...S and C—H...N hydrogen bonds into a three-dimensional network. At 100 K the density of the high-temperature form I (ρ = 1.457 g cm−3) is lower than that of the low-temperature form II (ρ = 1.462 g cm−3), which is in contrast to the values determined by XRPD at room temperature. Therefore, these two forms represent an exception to the Kitaigorodskii density rule, for which extensive intermolecular hydrogen bonding in form II might be responsible.


1996 ◽  
Vol 51 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Michael Feist ◽  
Sergej Trojanov ◽  
Erhard Kemnitz

Abstract The compounds (dmpipzH2)[MIIBr4] (M = Co, Zn) crystallize at room temperature from equimolar solutions of 1,4-dimethylpiperazine and MBr2 · n H2O in 3M HBr. (dmpipzH2)[CoBr4] is isotypic with the homologous chlorometalates of Co and Zn and crystallizes in the mono­ clinic space group P21/m with a = 6.424(3), b = 14.588(6), c = 7.102(6) Å, β = 90.87(6)°, Z = 2. (dmpipzH2)[ZnBr4], however, crystallizes in the monoclinic space group P21/c with a = 7,605(5), b = 13,760(9), c = 13,286(7) Å, β = 93,03(6)°, Z = 4. Both structures contain centrosymmetric cations (dmpipzH2)2+ in the chair form and slightly distorted tetrahedra [MBr4]2- with a mirror plane in the case of M = Co. Several distances N···Br in both structures are interpreted in terms of N-H···Br hydrogen bonds which are favoured by the packing in the case of M = Zn.


2007 ◽  
Vol 22 (3) ◽  
pp. 227-230 ◽  
Author(s):  
M. S. Molokeev ◽  
A. D. Vasiliev ◽  
A. G. Kocharova

Crystal structures of (NH4)2KWO3F3 at 298 K and 113 K were solved from X-ray powder diffraction data and refined by the Rietveld technique. The compound is isostructural with elpasolite K2NaAlF6 at room temperature with space group Fm-3m, a=8.95850(5) Å, V=718.961(7) Å3, Z=4, Dx=3.363 g/cm3, and MW=364.02. The structure was refined over 18 parameters to Rwp=12.6%, Rp=10.9%, Rexp=5.03%, and RB=3.27% from 40 independent reflections. (NH4)2KWO3F3 was transformed upon cooling to a ferroelastic monoclinic phase with space group P21/n, a′=6.3072(3) Å, b′=6.3028(3) Å, c′=8.9882(3) Å, β′=90.242(2)°, V=357.30(3) Å3, Z=2, and Dx=3.383 g/cm3. The low-temperature structure at 113 K was refined over 28 parameters to Rwp=20.9%, Rp=21.3%, Rexp=12.5%, and RB=6.93% from 453 independent reflections.


2015 ◽  
Vol 70 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Patrick Woidy ◽  
Florian Kraus

AbstractVanandium trifluoride reacts with dry liquid ammonia under the formation of lilac plate-shaped crystals of mer-triammine trifluorido vanadium(III) (1), mer-[VF3(NH3)3]. Single-crystal X-ray analysis was carried out at low temperature to elucidate the structure. The compound crystallizes in the monoclinic space group P21/c with a = 5.7284(4), b = 9.2033(5), c = 10.5271(6) Å, β = 91.795(6)°, and V = 554.72(6) Å3 at 123 K with Z = 4. The discrete [VF3(NH3)3] molecules are interconnected by hydrogen bonds.


2018 ◽  
Vol 233 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Masoumeh Tabatabaee ◽  
Morgane Poupon ◽  
Václav Eigner ◽  
Přemysl Vaněk ◽  
Michal Dušek

AbstractThe room temperature structure withP21/csymmetry of the zinc(II) complex of pyridine-2,6-dicarboxylic acid was published by Okabe and Oya (N. Okabe, N. Oya, Copper(II) and zinc(II) complexes of pyridine-2,6-dicarboxylic acid.Acta Crystallogr. C.2000,56, 305). Here we report crystal structure of the low temperature phaseβ-[Zn(pydcH)2]·3H2O, pydc=C7H3NO4, resulting from the phase transition around 200K. The diffraction pattern of the low temperature phase revealed satellite reflections, which could be indexed with q-vector 0.4051(10)b* corresponding to (3+1)Dincommensurately modulated structure. The modulated structure was solved in the superspace groupX21/c(0b0)s0, whereXstands for a non-standard centring vector (½, 0, 0, ½), and compared with the room temperature phase. It is shown that hydrogen bonds are the main driving force of modulation.


1995 ◽  
Vol 48 (12) ◽  
pp. 1933 ◽  
Author(s):  
CT Abrahams ◽  
GB Deacon ◽  
CM Forsyth ◽  
WC Patalinghug ◽  
BW Skelton ◽  
...  

With the facile displacement being utilized of thf from Yb(pin)2(thf)4 (pin = 2-phenylindol-1-yl, thf = tetrahydrofuran) in toluene solution, the complexes Yb(pin)2(dme)2 (dme = 1,2- dimethoxyethane), Yb(pin)2 (tmen)(tmen = N,N,N′,N′-tetramethylethane-1,2-diamine) and Yb(pin)2(diglyme)(thf) (diglyme = bis(2-methoxyethyl) ether) have been prepared from the respective ligands and Yb(pin)2(thf)4. Yb(pin)2 (diglyme) (thf) [monoclinic, space group P 21 /c, a 15.35(1), b 16.179(5), c 14.45(2) Ǻ, β 107.51(8)°, Z 4, R 0.044 for 2956 (I > 3σ(I)) 'observed' reflections] has a monomeric six-coordinate structure with transoid nitrogen donor atoms, N-Yb-N 143.6(4)° and an irregular coordination polyhedron described as either a distorted trigonal prism or a monocapped square pyramid. Attempted crystallization of Yb(pin)2 (thf) by partial desolvation of Yb(pin)2(thf)4 in hot toluene, containing a trace of dme, gave a mixture of red Yb(pin)2(thf) and orange [Yb(pin)2(dme)]2. The latter was independently synthesized by partial desolvation of Yb(pin)2(dme)2 in toluene. An X-ray crystal structure showed [Yb(pin)2(dme)]2 [monoclinic, space group P 21/c, a 11 .614(2), b 15.945(7), c 15.327(4) Ǻ, β 110.19(2)°, Z 2 dimers, R 0.070 for 2314 (I ≥ 3σ(I)) 'observed' reflections] to be a dimer with two bridging pin ligands, coordinated through nitrogen only. There is an approximately square pyramidal five-coordinate ytterbium environment with an apical dme oxygen, and with two bridging nitrogens, a terminal nitrogen, and a dme oxygen in the basal plane.


2005 ◽  
Vol 60 (2) ◽  
pp. 164-168 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
G. Eren ◽  
F. Gümüş ◽  
I. Svoboda

2-(3’-Hydroxypropyl)benzimidazolium (Hhpb) hexa- and tetrachloroplatinate (C10H13N2O)2·[PtCl6] 1 and (C10H13N2O)2·[PtCl4] 2 were synthesized and their crystal structures determined. Compound 1 is monoclinic, space group P21/n, a = 8.800(1), b = 14.389(2), c = 10.264(2) Å, β = 98.540(10)°, V = 1285.3(3) Å3, Z = 2 and Dc = 1.959 g cm−3. Compound 2 is triclinic, space group P1̄, a=7.8480(10), b=9.0460(10), c=9.6980(10) Å ,α =65.420(10), β =68.810(10), γ = 76.770(1)°,V =581.26(4) Å3, Z =1 and Dc =1.969 g cm−3. In both compounds, the Pt atoms reside at a centre of inversion. Compounds 1 and 2 are comprised of 2-(3’-hydroxypropyl)benzimidazolium (Hhpb)+: (C10H12N2O)+ and [PtCl6]2− and [PtCl4]2− ions, respectively, linked by intermolecular hydrogen bonds N...Cl [range from 3.428(3) to 3.584(4) Å ], N···O [2.769(5) Å ] and O···Cl [3.338(4) and 3.321(3) Å ] for 1, and N···Cl [3.162(7) Å ], N···O [2.749(8) Å ] and O···Cl [3.289(6) Å ] for 2.


1998 ◽  
Vol 53 (12) ◽  
pp. 1528-1530 ◽  
Author(s):  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract Benzo-18 -crown-6 -Acetonitrile (1/2), Crystal Structure Single crystals of the title complex resulted fortuitously during an attempt to co-crystallise MeN(SO2Me)2 with benzo-18-crown-6 from an MeCN solution at -30 °C. The crystal structure has been determined via data collection at -100 °C (monoclinic, space group P21/n, Z = 4). The nitrile molecules are located with their me­ thyl groups above and below the plane of the 18-membered crown ring, the Me hydrogen atoms being rotationally disordered about the MeCN axes; C(methyl)···O(crown) distances range from 309.4(3) to 384.9(3) pm.


2014 ◽  
Vol 70 (9) ◽  
pp. o924-o925 ◽  
Author(s):  
Raúl Castañeda ◽  
Sofia A. Antal ◽  
Sergiu Draguta ◽  
Tatiana V. Timofeeva ◽  
Victor N. Khrustalev

In an attempt to grow 8-hydroxyquinoline–acetaminophen co-crystals from equimolar amounts of conformers in a chloroform–ethanol solvent mixture at room temperature, the title compound, C9H7NO, was obtained. The molecule is planar, with the hydroxy H atom forming an intramolecular O—H...N hydrogen bond. In the crystal, molecules form centrosymmetric dimersviatwo O—H...N hydrogen bonds. Thus, the hydroxy H atoms are involved in bifurcated O—H...N hydrogen bonds, leading to the formation of a central planar four-membered N2H2ring. The dimers are bound by intermolecular π–π stacking [the shortest C...C distance is 3.2997 (17) Å] and C—H...π interactions into a three-dimensional framework. The crystal grown represents a new monoclinic polymorph in the space groupP21/n. The molecular structure of the present monoclinic polymorph is very similar to that of the orthorhombic polymorph (space groupFdd2) studied previously [Roychowdhuryet al.(1978).Acta Cryst.B34, 1047–1048; Banerjee & Saha (1986).Acta Cryst.C42, 1408–1411]. The structures of the two polymorphs are distinguished by the different geometries of the hydrogen-bonded dimers, which in the crystal of the orthorhombic polymorph possess twofold axis symmetry, with the central N2H2ring adopting a butterfly conformation.


Sign in / Sign up

Export Citation Format

Share Document