Failure Mechanism of Yttria Stabilized Zirconia Atmospheric Plasma Sprayed Thermal Barrier Coatings Subjected to Calcia-Magnesia-Alumino-Silicate Environmental Attack

2017 ◽  
Vol 270 ◽  
pp. 39-44 ◽  
Author(s):  
Ladislav Čelko ◽  
David Jech ◽  
Pavel Komarov ◽  
Michaela Remešová ◽  
Karel Dvořák ◽  
...  

The contribution focuses on the description of failure mechanism of atmospheric plasma sprayed multilayer thermal barrier coatings subjected to calcia-magnesia-alumino-silicate (CMAS) environmental attack. To identify exothermic and endothermic reactions which occurred during heating/cooling by means of calorimetry was also utilized initial yttria stabilized zirconia (YSZ) powder subsequently used for thermal spraying of multilayer thermal barrier coating system (TBCs), CMAS powder later on utilized for thin layer deposition and its mixture. Atmospheric plasma spray technique was used to produce the TBCs on a grit blasted nickel-based superalloy substrates, where CoNiCrAlY powder was used for deposition of a bond coat and YSZ powder was sprayed as a top coat. In accordance to the aerospace standard the thin layer of CMAS was deposited on as sprayed TBCs samples surface from its colloidal solution by paint brush method. Burner-rig test, utilizing direct propane-oxygen flame, was used for thermal cyclic exposition of the multilayer coated samples at the temperature of 1150 °C. Samples after thermal cyclic exposure test were investigated by means of materialographic analysis approaches. The significant reduction in life-time of CMAS coated YSZ top coat was observed due to lower melting point phase formation and molten silicate crystallization within the pores providing the spallation identified as a major mechanism of TBCs failure.

2012 ◽  
Vol 472-475 ◽  
pp. 2502-2507
Author(s):  
Zong Yin Duan ◽  
Dong Sheng Wang

This paper deals with the microstructure and thermal shock behavior of laser remelting of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) deposited by plasma spraying. The microstructures of the coatings were analyzed by scanning electron microscopy (SEM). It was found that the as-sprayed ceramic coating had laminated structure with high porosity. However, the coating exhibited a dense lamellar-like layer with segment cracks on the remained plasma-sprayed porous layer. Thermal shock experiments for the two kinds of TBCs were performed by water quenching method. Testing result showed that the laser-remelted TBC had better thermal shock resistance than the as-sprayed one. The damage mode of the as-sprayed TBC was great-size whole spalling. In contract, the failure mechanism of the laser-remelted one was mainly local pelling. Segmented cracks of the top ceramic coatings caused by laser remelting improved the stress accommodation and were mainly attributed to the enhancement for thermal shock life of TBC.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-11
Author(s):  
Pasupuleti Kirti Teja ◽  
Parvati Ramaswamy ◽  
Narayana Murthy S.V.S.

Functionally graded layers in thermal barrier coatings reduce the stress gradient between the overlaid ceramic coatings and the underlying metallic component. Introduced to alleviate early onset of spallation of the coating due to thermal expansion mismatch, this facilitates improvement in the life of the component. Conventional thermal barrier coatings typically comprise of duplex layers of plasma sprayed 8% yttria stabilized zirconia (ceramic) coatings on bond coated (NiCrAlY) components/substrates (Inconel 718 for example). This work highlights the superiority of plasma sprayed coatings synthesized from blends of the intermetallic bond coat and ceramic plasma spray powders on Inconel 718 substrates in three-layer configuration over the duplex layered configuration. Assessed through (a) thermal shock cyclic tests (at 1200oC and 1400oC) in laboratory scale basic burner rig test facility and (b) oxidation stability test in high temperature furnace (at 800oC and 1000oC) the functionally graded coatings of certain configurations exhibited more than double the life of the conventional 8% yttria stabilized zirconia duplex (double layer) coatings. Micro- and crystal structure analysis support the findings and results are detailed and discussed.


Sign in / Sign up

Export Citation Format

Share Document