The Use of Metastable Austenite to Increase the Wear Resistance of Steels of the Pearlite Class

2018 ◽  
Vol 284 ◽  
pp. 1163-1167
Author(s):  
Mikhail A. Filippov ◽  
G. Yagudin ◽  
V. Legchilo ◽  
M. Khadiyev ◽  
N. Ozerets ◽  
...  

The wide application of steel 110G13L for armor plates in mills and crushers makes it urgent to search for alternative materials with close or sufficient operational stability in conditions of shock abrasive wear. A promising path in this direction is the replacement of steel 110G13L with high-carbon pearlitic steels. The aim of this work is a comparative study of the relationship between the structure formed in the heat treatment process of the low-alloyed pearlite steels 70X2GSML and 150HNML and their abrasive wear resistance. Special attention was paid to the possibility of using metastable austenite as a structural component, which increases the abrasive wear resistance of pearlitic steels. It is established that the steel of the pearlite class 70X2GSML, after normalization from 850 °C and tempering at 550 °C, can be used for casting armor plates for ball and rod mills, as well as to cast parts subjected to machining and operating under abrasive conditions without significant impact loads. It is shown that an additional reserve for increasing the abrasive wear resistance of steels of the pearlite class - 70X2GSML and 150XNML - is high-temperature quenching with the formation of a metastable austenite in the structure. The maximum abrasion wear resistance is achieved after the high-temperature quenching of steels (1150 °C) in oil, which forms a martensitic structure with a metastable austenite in the amount of 20-70%, which, with wear, turns into martensite with a high friction hardening ability on the wear surface.

2017 ◽  
Vol 265 ◽  
pp. 811-814
Author(s):  
S.M. Nikiforova ◽  
M.A. Filippov ◽  
A.S. Zhilin

The application of hardening heat treatment process at high temperatures (1100-1170 °C) for high-chromium steels of martensitic-carbide class 95Kh18 and Kh12MFL has been studied. Metallic substrate consisted of high-carbon martensite and residual metastable austenite with some traces of carbide has been obtained. Experiments have shown the resulting structure gains high frictional hardening capacity upon the application of heat. Sufficient amount of cooling martensite can be traced in the analyzed steel after high-temperature quenching (cooling up to the temperature of-70°С). Being combined with residual metastable austenite, it provides the increase of abrasive wear resistance by 25% compared with high temperature annealing. The influence of tempering temperature on hardness and abrasive wear resistance of analyzed steels 95Kh18 and Kh12MFL has also been determined.


2019 ◽  
Vol 945 ◽  
pp. 574-578 ◽  
Author(s):  
L.S. Malinov ◽  
I.E. Malysheva ◽  
E.S. Klimov ◽  
V.V. Kukhar ◽  
E.Y. Balalayeva

The effect of quenching from 900°C (20 min exposure) and different tempering in the 250-650°C (for 1 hour) interval, as well as additionally preliminary carburization for 8 hours at 930°C, followed by a similar heat treatment on abrasive and shock-abrasive wear of low-carbon manganese (10-24%Mn) steels, phase composition and mechanical properties was studied. It was confirmed that an increase in the manganese reduces the abrasive wear resistance and increases the impact-abrasive wear resistance. The expediency of carburization of low-carbon manganese steels is shown in order to obtain the residual austenite in the structure which amount and stability must be optimized in relation to specific abrasive impact characterized by the dynamic ratio with taking into account the chemical composition.


2013 ◽  
Vol 58 (3) ◽  
pp. 841-844
Author(s):  
B. Kalandyk

Abstract This paper presents the results of experimental studies, the main aim of which has been to demonstrate that changes in the microstructure of austenitic 18%Cr-9%Ni cast steel provoked by the addition of 1.4% boron, and boron with titanium, give increased wear resistance. After melting the high-alloyed 18%Cr-9%Ni cast steel with an addition of boron, and boron with titanium, metallographic examinations were conducted using light microscopy and SEM. These examinations revealed in the austenitic structure of the 18%Cr-9%Ni cast steel, the presence of a eutectic rich in boron and chromium, and characterised by a microhardness of 1838-1890 μ HV20. Additionally, in the cast steel inoculated with boron and titanium, the presence of titanium nitride precipitates was observed. Changes that have occurred in the microstructure as a result of introducing the additions of boron, and boron with titanium, also caused an increase of the cast steel hardness from 212 HV30 to 290-320 HV30 and 320-350 HV30, respectively. To determine the abrasive wear resistance, 16-hour Miller test was performed (ASTM G 75-07), wherein the abrasive medium was a mixture of SiC and water. Obtaining the hard, rich in boron and chromium, eutectic and titanium nitride precipitates in the structure of 18%Cr-9%Ni cast steel increased the abrasive wear resistance by approximately 21%, according to the data recorded in the sixteenth hour of the test cycle. As an additional benchmark point for the results obtained served the wear resistant, structural, L35GSM steel used for castings working in difficult conditions. Comparing the values of abrasive wear resistance obtained for the 18%Cr-9%Ni cast steel and cast L35GSM steel, an increase in the wear resistance of the 18%Cr-9%Ni cast steel by about 35% has been proved.


2018 ◽  
Vol 284 ◽  
pp. 1157-1162
Author(s):  
Mikhail A. Filippov ◽  
N. Ozerets ◽  
S.M. Nikiforova ◽  
E. Smagireva

Ways to increase the abrasive wear resistance of high-chromium steel depending on changes in the temperature of heating for quenching and cold treatment are studied in this paper. It was found that during quenching from temperatures of 850-1000 °C, martensite is formed in the structure of steel H12МFL, which provides high hardness: however, maximum abrasion resistance is not achieved in conditions of abrasive wear. An increase in the heating temperature for quenching to 1170 °C leads to a decrease in the initial hardness, which is due to the dissolution of carbides and an increase in the amount of residual austenite, but this is accompanied by a significant increase in wear resistance in abrasive wear. Residual austenite, obtained as a result of high-temperature hardening (from 1170 °C), is metastable and, in the process of wear, becomes a deformation-induced martensite. This gives the steel maximum wear resistance due to its high frictional hardening ability. A further increase in the temperature of heating for quenching above 1170 °C is inexpedient, since it leads to grain growth. Additional possibilities for increasing abrasive wear resistance consist of the cold treatment of high-carbon steels because of an increase in the amount of cooled martensite and an increase in the initial hardness. Cold treatment of the test steel after high-temperature quenching with cooling to minus 70 °C for 20 min and low tempering at a temperature of 200 °C for 2 h allows for further increases to the abrasion resistance by 25% due to the formation of 15% high-carbon chromic martensite cooling and initial hardness up to 60 НRC, with the preservation of 20% of residual metastable austenite and carbides.


Sign in / Sign up

Export Citation Format

Share Document