Heat-Resistant Al-Alloys with Quasicrystalline and L12- Precipitates

2022 ◽  
Vol 327 ◽  
pp. 26-32
Author(s):  
Franc Zupanič ◽  
Tonica Bončina

We have been developing Al-Mn-Cu based alloys alloyed with minor additions of different elements. Small additions of beryllium enhance the formation of the icosahedral quasicrystalline phase (IQC) during solidification, especially during ageing. Upon solidification, primary IQC-particles may form, with sizes, ranging from 5 to 50 μm. IQC is also present as a part of binary eutectic in the interdendritic regions. More importantly, nanosized quasicrystalline precipitates can form during T5-treatment at temperatures ranging from about 250−450 °C. They are, in fact, metastable precipitates transforming to ternary T-precipitates (Al20Mn3Cu2) phase above 450 °C. The heat resistance can be increased considerably by the addition of Sc and Zr by forming L12-precipitates in spaces between quasicrystalline precipitates. In this paper, we studied three alloys, two Al-Mn-Cu-Be alloys and an Al-Mn-Cu-Be-Sc-Zr alloy. The alloys were produced by vacuum induction melting and casting into a copper mould. We investigated the response of the alloys to different heat treatments and their heat resistance at higher temperatures. It was shown that the alloys could be precipitation strengthened by ageing at 300 °C and 400 °C. The hardness of the alloy stayed at relatively high levels even at 500 °C, while more substantial softening occurred at 600 °C.

2000 ◽  
Vol 42 (12) ◽  
pp. 2177-2183 ◽  
Author(s):  
M. N. Mikheeva ◽  
G. Kh. Panova ◽  
A. A. Teplov ◽  
M. N. Khlopkin ◽  
N. A. Chernoplekov ◽  
...  

1999 ◽  
Vol 40 (10) ◽  
pp. 1181-1184 ◽  
Author(s):  
Akihisa Inoue ◽  
Tao Zhang ◽  
Junji Saida ◽  
Mitsuhide Matsushita ◽  
Min Wei Chen ◽  
...  

2000 ◽  
Vol 15 (6) ◽  
pp. 1280-1283 ◽  
Author(s):  
M. Matsushita ◽  
J. Saida ◽  
C. Li ◽  
A. Inoue

A nanoscale icosahedral quasicrystalline phase was confirmed as a primary precipitation phase in the melt-spun Zr70TM10Pd20 (TM = Fe, Co, or Cu) ternary glassy alloys with a two-stage crystallization process. The onset temperature of the transformation from amorphous to icosahedral phase is 713 K for Fe-, 696 K for Co-, and 680 K for Cu-containing alloys at the heating rate of 0.67 Ks−1. The size of the icosahedral particles is in the range of 20 to 50 nm for the Zr70Cu10Pd20 glassy alloy annealed for 120 s at 720 K. The icosahedral phase has a very fine particle size in a diameter range below 10 nm for the Zr70Fe10Pd20 and Zr70Co10Pd20 alloys. The crystallization reaction after the first exothermic peak results in the transition from the icosahedral to crystalline phases through a sharp exothermic reaction. Thus, the formation of the nanoscale icosahedral phase indicates the possibility that an icosahedral short-range order exists in the present glassy alloys.


2001 ◽  
Vol 16 (6) ◽  
pp. 1535-1540 ◽  
Author(s):  
S. M. Lee ◽  
B. H. Kim ◽  
D. H. Kim ◽  
W. T. Kim

Formation of the icosahedral quasicrystalline phase in conventionally cast Al62Cu25.5Fe12.5 and Al55Cu25.5Fe12.5Be7 alloys were investigated. The icosahedral phase (I-phase) forming ability was greatly improved by partial replacement of Al by 7 at.% Be. The as-cast Al55Cu25.5Fe12.5Be7 alloy consisted of dendritic primary I-phase and interdendritic τ-phase, whereas that of an as-cast Al62Cu25.5Fe12.5 alloy consisted of various phases such as the β-, I-, and τ-phases, together with a small amount of the λ- and η-phases. The kinetic barrier for transformation into single I-phase by heat treatment was greatly reduced in an Al55Cu25.5Fe12.5Be7 alloy. The I-phase in an Al55Cu25.5Fe12.5Be7 alloy has the same face centered icosahedral structure as that in an Al62Cu25.5Fe12.5 alloy and is of high quality without phason strain.


Sign in / Sign up

Export Citation Format

Share Document