differential speed rolling
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 14)

H-INDEX

32
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1925
Author(s):  
Young Gun Ko ◽  
Kotiba Hamad

The aim of this paper was to investigate the microstructural development and properties of interstitial free (IF) steel fabricated using the DSR (differential speed rolling) process. Severe plastic deformation of the DSR passes was imposed on the sample for up to four passes, leading to ~1.7 total strain with a speed ratio of 1:4 between the two rolls. Microstructural observation revealed that the equiaxed grain size of ~0.7 µm, including the formation of grain boundaries with a high angle of misorientation, was reached after four operations of DSR, which was attributed to the grain subdivision of severely elongated ferrite grain. Since the deformation mode of the DSR operation was dominated by severe shear deformation, the main shear texture of the bcc components appeared in all DSR operations in which the α-fiber of the {110} slip became a main component in accommodating the severe plastic deformation of the DSR process. The intensity of the shear texture, the {110} and {112} slip, increased by increasing the number of passes. Moreover, the γ-fiber of the <112>-type planes was activated as a result of the alternation of the shear direction during sample rotation. The microhardness and room temperature tensile tests revealed that the strength of the IF steel improved as the amount of strain increased, and this was attributed to the grain refinement and texture characteristics of the samples after the DSR processing.


2021 ◽  
Vol 58 (10) ◽  
pp. 540-545
Author(s):  
Takumi Kusano ◽  
Masaaki Tani ◽  
Katsuharu Okuda ◽  
Hiroshi Nakamura

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 926
Author(s):  
Honglin Zhang ◽  
Zhigang Xu ◽  
Sergey Yarmolenko ◽  
Laszlo J. Kecskes ◽  
Jagannathan Sankar

Magnesium-6 wt.% aluminum (Mg-6Al) alloy plates with a 6-millimeter thickness were processed from an initial 12-millimeter thickness by differential speed rolling (DSR), with a 0.76-millimeter thickness reduction per pass using a speed ratio of 2, preheating temperature of 315 °C, and roll temperature of 265 °C. The effects of annealing temperature of 250, 275, and 300 °C with a corresponding holding time of 15 min on the microstructure, texture, and mechanical properties were investigated. Key results show that dynamic recrystallization (DRX) occurred during the roll processing, resulting in a greatly reduced grain size. In addition, the basal pole of the as-rolled plate was inclined to the rolling direction (RD) by ~20°, due to the shear strain introduced during DSR. Subsequent annealing caused grain growth, eliminated the basal pole inclination towards the RD, and slightly increased the pole intensity. Compared with the as-rolled plate, the average of the ultimate tensile strength (UTS) and the yield strength (YS) of the annealed plates decreased, while the average elongation at fracture (εf) increased. With the annealing temperature of 275 °C, the plate achieved a good combination of mechanical properties with UTS, YS, and εf being 292.1 MPa, 185.0 MPa, and 24.9%, respectively. These results suggest that post-roll annealing is an effective way to improve the mechanical response of this Mg alloy processed by DSR.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Kamil Majchrowicz ◽  
Paweł Jóźwik ◽  
Witold Chromiński ◽  
Bogusława Adamczyk-Cieślak ◽  
Zbigniew Pakieła

The effect of shear deformation introduced by differential speed rolling (DSR) on the microstructure, texture and mechanical properties of Mg-6Sn alloy was investigated. Mg-6Sn sheets were obtained by DSR at speed ratio between upper and lower rolls of R = 1, 1.25, 2 and 3 (R = 1 refers to symmetric rolling). The microstructural and textural changes were investigated by electron backscattered diffraction (EBSD) and XRD, while the mechanical performance was evaluated based on tensile tests and calculated Lankford parameters. DSR resulted in the pronounced grain refinement of Mg-6Sn sheets and spreading of basal texture as compared to conventionally rolled one. The average grain size and basal texture intensity gradually decreased with increasing speed ratio. The basal poles splitting to transverse direction (TD) or rolling direction (RD) was observed for all Mg-6Sn sheets. For the as-rolled sheets, YS and UTS increased with increasing speed ratio, but a significant anisotropy of strength and ductility between RD and TD has been observed. After annealing at 300 °C, Mg-6Sn sheets became more homogeneous, and the elongation to failure was increased with higher speed ratios. Moreover, the annealed Mg-6Sn sheets were characterized by a very low normal anisotropy (0.91–1.16), which is normally not achieved for the most common Mg-Al-Zn alloys.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4159 ◽  
Author(s):  
Ahmad Bahmani ◽  
Woo-Jin Kim

A differential speed rolling (DSR) technique that provides capability of producing large-scale materials with fine grains and controlled texture in a continuous manner has attracted several researchers and industries. In this study, we tried to review the articles related to DSR and especially the high-ratio DSR (HRDSR) technique that is associated with a high speed ratio between the upper and lower rolls (≥2) and compare the change in microstructure and mechanical properties after HRDSR with the results obtained by using other severe plastic deformation (SPD) techniques to see the potential of the HRDSR technique in enhancing the mechanical properties of metals and metal matrix composites. The reviewed results show that HRDSR is an important technique that can effectively refine the grains to micro or nano sizes and uniformly disperse the particles or reinforcement throughout the matrix, which helps extensively in improving ambient and superplastic mechanical properties of various metals and alloys.


Sign in / Sign up

Export Citation Format

Share Document