Development of a Web Application System for Seismic Waveform Data Observed in Real Time With the Seafloor Seismic Network DONET

2016 ◽  
Vol 50 (3) ◽  
pp. 87-91 ◽  
Author(s):  
Morifumi Takaesu ◽  
Hiroki Horikawa ◽  
Kentaro Sueki ◽  
Narumi Takahashi ◽  
Akira Sonoda ◽  
...  

AbstractMega-thrust earthquakes are anticipated to occur in the Nankai Trough in Southwest Japan. In order to monitor seismicity, crustal deformations, and tsunamis in earthquake source areas, we deployed the seafloor seismic network DONET (Dense Ocean-floor Network System for Earthquakes and Tsunamis) in 2010 (Kaneda et al., 2015; Kawaguchi et al., 2015). The DONET system consists of a total of 20 stations that are composed of multiple types of sensors, including strong-motion seismometers and quartz pressure gauges. These stations are densely distributed at an average distance of 15‐20 km and cover from near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optic cable and then to the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) data management center through a private network in real time.After the 2011 earthquake off the Pacific coast of Tohoku, each local government close to the Nankai Trough sought to devise a disaster prevention scheme. These local governments requested that JAMSTEC disseminate the DONET data along with other research capabilities so that they could exploit this important earthquake information. In order to provide local government access to the DONET data, which are recorded ostensibly for research purposes, we have developed a web application system, REIS (real-time earthquake information system), that provides seismic waveform data to some local governments close to the Nankai Trough. In the present paper, we introduce the specifications of REIS and its system architecture.

2020 ◽  
Vol 91 (4) ◽  
pp. 2127-2140 ◽  
Author(s):  
Glenn Thompson ◽  
John A. Power ◽  
Jochen Braunmiller ◽  
Andrew B. Lockhart ◽  
Lloyd Lynch ◽  
...  

Abstract An eruption of the Soufrière Hills Volcano (SHV) on the eastern Caribbean island of Montserrat began on 18 July 1995 and continued until February 2010. Within nine days of the eruption onset, an existing four-station analog seismic network (ASN) was expanded to 10 sites. Telemetered data from this network were recorded, processed, and archived locally using a system developed by scientists from the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program (VDAP). In October 1996, a digital seismic network (DSN) was deployed with the ability to capture larger amplitude signals across a broader frequency range. These two networks operated in parallel until December 2004, with separate telemetry and acquisition systems (analysis systems were merged in March 2001). Although the DSN provided better quality data for research, the ASN featured superior real-time monitoring tools and captured valuable data including the only seismic data from the first 15 months of the eruption. These successes of the ASN have been rather overlooked. This article documents the evolution of the ASN, the VDAP system, the original data captured, and the recovery and conversion of more than 230,000 seismic events from legacy SUDS, Hypo71, and Seislog formats into Seisan database with waveform data in miniSEED format. No digital catalog existed for these events, but students at the University of South Florida have classified two-thirds of the 40,000 events that were captured between July 1995 and October 1996. Locations and magnitudes were recovered for ∼10,000 of these events. Real-time seismic amplitude measurement, seismic spectral amplitude measurement, and tiltmeter data were also captured. The result is that the ASN seismic dataset is now more discoverable, accessible, and reusable, in accordance with FAIR data principles. These efforts could catalyze new research on the 1995–2010 SHV eruption. Furthermore, many observatories have data in these same legacy data formats and might benefit from procedures and codes documented here.


2016 ◽  
pp. 2261-2275
Author(s):  
Joo Tan

This chapter introduces the use of software technology that is used to create a Web application system called iPAWS to help individuals with Autism Spectrum Disorder (ASD) accomplish simple tasks. These individuals can repeatedly access tasks for assistance or learning through a mobile tablet. For post-school employment, the use of this software technology can help lessen the burden of supervision needed for individuals with autism. For school age children at different levels, iPAWS can serve as training or as a learning tool. This chapter starts with a review of computer-based interventions that have been used in the past. Next, the overall design of the Web application system is introduced. Sample cases that are suitable for children and post-secondary employment are then discussed. Two case studies that were conducted with individuals on the autism spectrum, follow. Finally, possible future improvements to iPAWS are presented.


2018 ◽  
Vol 52 (3) ◽  
pp. 120-127 ◽  
Author(s):  
Narumi Takahashi ◽  
Kentaro Imai ◽  
Kentaro Sueki ◽  
Ryoko Obayashi ◽  
Masanobu Ishibashi ◽  
...  

AbstractThe damage and loss of life caused by tsunamis can be reduced by timely warnings, which predict the arrival time and maximum height of tsunamis, to support evacuations and other mitigating actions. We have developed a real-time tsunami prediction system based on data from the Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) that has been implemented in some local governments along the Pacific coast of Japan. The system generates estimates of tsunami arrival times and the height, inundation areas, and worst case using selected fault rupture models. The main objective of this paper is to show the possibility of applying the above system for a complicated topography area, and we report a successful application of the system in Sakaide, a city on the Shikoku coast of the Inland Sea, using a simulated great plate-boundary earthquake in the Nankai Trough. The simulated tsunami propagates to Sakaide by complicated routes between several islands. According to calculated tsunami waveforms of 1,506 cases, waveforms of tsunamis propagating to the Inland Sea have a relatively uniform frequency, regardless of the magnitude of the causative event, after running through the narrow straits in the Inland Sea. At the same time, waves are amplified as they pass between the islands of Shodoshima and Shikoku by an interaction with reflected waves. These effects are compatible with this prediction system, and we confirmed that our predicted tsunami is consistent with the final result from a model of a magnitude 9 Nankai Trough earthquake.


Sign in / Sign up

Export Citation Format

Share Document