B-Type Natriuretic Peptide: A Diagnostic, Prognostic, and Therapeutic Tool in Heart Failure

2004 ◽  
Vol 13 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Annu Prahash ◽  
Trenda Lynch

B-type natriuretic peptide is a neurohormone secreted from the cardiac ventricles in response to ventricular stretch and pressure overload. It counteracts the vasoconstriction that occurs as a compensatory mechanism in heart failure. A new test for measuring plasma levels of B-type natriuretic peptide can help in the diagnosis and treatment of patients with congestive heart failure. Dyspnea associated with cardiac dysfunction is highly unlikely in patients with levels of the peptide less than 100 pg/mL. Whereas most patients with significant congestive heart failure have levels of the peptide greater than 400 pg/mL, in patients with levels of 100 to 400 pg/mL, left ventricular dysfunction without volume overload, pulmonary embolism, and cor pulmonale must be ruled out. Thus, incorporating measurement of B-type natriuretic peptide into clinical evaluation helps physicians and nurses diagnose heart failure more quickly, especially in patients who have multiple comorbid conditions. Elevated levels of B-type natriuretic peptide indicate a poor prognosis in terms of a higher mortality and more hospital readmissions. Levels of B-type natriuretic peptide could be used to guide therapy and discharge planning for patients admitted with decompensated heart failure.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mihály Ruppert ◽  
Christian Karime ◽  
Alex A Sayour ◽  
Attila Oláh ◽  
Dávid Nagy ◽  
...  

Introduction: Both sustained left ventricular (LV) pressure overload (PO) and volume overload (VO) induces LV remodeling and eventually development of heart failure (HF). Using rat models, the present study aimed to provide a detailed comparison of distinct aspects of LV function in PO- and VO-induced HF. Methods: PO and VO was induced by transverse aortic constriction (TAC, n=12) and aortocaval shunt (AV-shunt, n=12) creation respectively. Controls underwent corresponding sham operations (n=11). LV remodeling was characterized by echocardiography, histology, qRT PCR, and western blot. LV function was assessed by invasive pressure-volume (P-V) analysis. Results: Both sustained PO and VO resulted in the development of HF, as evidenced by increased LV BNP mRNA expression, pulmonary edema, and characteristic symptoms. While the extent of LV hypertrophy was comparable between the HF models, PO induced concentric while VO evoked eccentric LV remodeling. P-V analysis revealed impaired systolic function in both HF models. Accordingly, decreased ejection fraction and impaired ventriculo-arterial coupling (calculated as the ratio of arterial elastance/LV contractility [VAC]: 0.38±0.05 vs. 1.30±0.13, ShamTAC vs. TAC and 0.52±0.08 vs. 1.17±0.13, ShamAV-Shunt vs. AV-shunt; p<0.05) was detected in both HF models. However, in case of VO the severely reduced LV contractility (slope of end-systolic P-V relationship: 1.79±0.19 vs. 0.52±0.06, ShamAV-Shunt vs. AV-shunt, p<0.05 and 2.14±0.28 vs. 2.03±0.21, ShamTAC vs. TAC p>0.05) underpinned the contractility-afterload mismatch, while in case of PO the increased afterload (arterial elastance: 0.77±0.07 vs. 2.64±0.28, ShamTAC vs. TAC and 0.80±0.07 vs. 0.54±0.05, ShamAV-Shunt vs. AV-shunt; p<0.05) was the main determinant. Furthermore, prolongation of active relaxation occurred to a greater extent in case of PO. In addition, increased myocardial stiffness was only observed in PO-induced HF. Conclusion: Systolic function was reduced in both HF models. However, different factors underpinned the impaired VAC in case of VO (reduced LV contractility) and PO (increased arterial elastance). Furthermore, although diastolic function deteriorated in both models, it occurred to a greater extent in case of PO.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Rongxue Wu ◽  
Maura Knapp ◽  
Mei Zheng ◽  
James K Liao

Background: Left ventricular hypertrophy (LVH) is an independent risk factor for heart failure and sudden death. In addition, LVH is also a compensatory mechanism that helps the heart cope with pressure overload. Stress is considered one factor that is related to cardiac outcomes. Glucocorticoids are primary stress hormones, whose role in the heart is poorly understood. Here, we hypothesize that a reduction in the expression of the glucocorticoid receptor (GR) would decrease cardiac hypertrophy in response to pressure overload. Methods and Results: The GR homozygous mutation (GR-/-) is embryonic lethal. However, GR heterozygous mice (GR+/-) show a normal phenotype. We subjected GR+/- mice to transverse aortic constriction (TAC). At four weeks after TAC, the ratio of heart weight to tibia length increased significantly in wild-type mice (control) littermates compared with GR+/- mice. Cardiac myocyte size was also smaller in GR+/- mice vs controls, suggesting an attenuated cardiac growth response in these mice. In addition, GR+/- hearts displayed increased cell death and enhanced fibrosis in response to TAC. Cardiac function, determined by EF% and FS% (measured using the Vevo2100 imaging system), was significantly reduced in GR+/- mice compared with controls at eight weeks post-operation, while LVEDD was increased. Together, with the increased ratio of lung weight to body weight in GR+/- mice at eight weeks following TAC, this suggests an exaggerated heart failure in GR+/- mice. In vitro, hydrocortisone-induced cell growth in H9c2 cells was abolished by GR knockdown using siRNA. Finally, we looked at the mechanisms by which GR may play a role in the development of hypertrophy. We found reduced ERK-JNK activity in GR+/- hearts, suggesting that the reduced hypertrophic response in GR+/- mice occurs, at least partially, through abolished JNK and ERK activity. Conclusion: The glucocorticoid receptor is required for cardiac hypertrophy and protects the heart from heart failure during cardiac pressure overload.


Sign in / Sign up

Export Citation Format

Share Document