METHODS OF MEASURING BLOOD MEAL SIZE AND PROTEINASE ACTIVITY FOR DETERMINING EFFECTS OF MATED STATE ON DIGESTIVE PROCESSES OF FEMALE AEDES AEGYPTI (L.) (DIPTERA: CULICIDAE)

1986 ◽  
Vol 118 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Jon G. Houseman ◽  
A.E.R. Downe

AbstractTwo techniques for measuring size of ingested blood meal and 5 methods of measuring proteinase activity in the midgut of Aedes aegypti are compared. Protein, measured after trichloroacetic acid precipitation, was found to be most suitable for determining blood meal size and loss of protein from the gut. Of 5 proteinase substrates tested (BAPNA (benzoyl-DL-arginine-p-nitroanilide), hemoglobin, casein, azocasein, and hide powder azure), BAPNA was considered most suitable for trypsin measurements. These techniques were used to show that virgin females, 6 and 10 days after eclosion, consumed smaller meals than mated females. Virgin females also showed delays in both onset of protein loss from the gut and the increase in proteinase activity after blood feeding.

1985 ◽  
Vol 22 (4) ◽  
pp. 398-400 ◽  
Author(s):  
Cheryl C. Courtney ◽  
Bruce M. Christensen ◽  
Walter G. Goodman

2020 ◽  
Author(s):  
Lynda Nouage ◽  
Emmanuel Elanga-Ndille ◽  
Achille Binyang ◽  
Magellan Tchouakui ◽  
Tatiane Atsatse ◽  
...  

AbstractInsecticide resistance genes are often associated with pleiotropic effects on various mosquito life-history traits. However, very little information is available on the impact of insecticide resistance, especially metabolic resistance, on blood feeding process in mosquitoes. Here, using two recently detected DNA-based metabolic markers in the major malaria vector, An. funestus, we investigated how metabolic resistance genes could affect blood meal intake.After allowing both field F1 and lab F8 Anopheles funestus strains to feed on human arm for 30 minutes, we assessed the association between key parameters of blood meal process including, probing time, feeding duration, blood feeding success and blood meal size, and markers of glutathione S-transferase (L119F-GSTe2) and cytochrome P450 (CYP6P9a_R) - mediated metabolic resistance. None of the parameters of blood meal process was associated with L119F-GSTe2 genotypes. In contrast, for CYP6P9a_R, homozygote resistant mosquitoes were significantly more able to blood-feed than homozygote susceptible (OR = 3.3; CI 95%: 1.4-7.7; P =0.01) mosquitoes. Moreover, the volume of blood meal ingested by CYP6P9a-SS mosquitoes was lower than that of CYP6P9a-RS (P<0.004) and of CYP6P9a-RR (P<0.006). This suggests that CYP6P9a gene affects the feeding success and blood meal size of An. funestus. However, no correlation was found in the expression of CYP6P9a and that of genes encoding for salivary proteins involved in blood meal process.This study suggests that P450-based metabolic resistance may increase the blood feeding ability of malaria vectors and potential impacting their vectorial capacity.


2019 ◽  
Author(s):  
Malal M Diop ◽  
Fabrice Chandre ◽  
Marie Rossignol ◽  
Angélique Porciani ◽  
Mathieu Chateau ◽  
...  

AbstractThe massive use of insecticide-treated nets (ITNs) has drastically changed the environment for malaria vector mosquitoes, challenging their host-seeking behaviour and biting success. Here, we investigated the effect of a brief exposure to an ITN on the biting behaviour of Anopheles mambiae mosquitoes and the interaction between such behaviour and the kdr mutation that confers resistance to pyrethroids. To this aim, we developed a video assay to study the biting behaviour of mosquitoes with similar genetic background, but different kdr locus genotypes (SS i.e. homozygous susceptible, RS i.e. heterozygous and RR i.e. homozygous resistant), after a brief exposure to either control untreated nets or one of two types of pyrethroid-treated nets (deltamethrin or permethrin). In presence of untreated nets, the kdr mutation did not influence mosquito blood feeding success but caused differences in feeding and prediuresis durations and blood meal size. Exposure to deltamethrin ITN decreased the blood feeding success rate of RR and RS mosquitoes, whereas in presence of permethrin ITN, the kdr mutation increased the blood-feeding success of mosquitoes. Exposure to the two types of pyrethroid-treated nets reduced feeding duration, prediuresis duration and blood meal size of all three genotypes. Our study demonstrates a complex interaction between insecticide exposure and the kdr mutation on the biting behavior of mosquitoes, which may substantially impact malaria vector fitness and disease transmission.


1969 ◽  
Vol 15 (11) ◽  
pp. 2039-2044 ◽  
Author(s):  
Robert W. Gwadz
Keyword(s):  

1980 ◽  
Vol 73 (3) ◽  
pp. 431-433 ◽  
Author(s):  
A. L. Hollander ◽  
R. E. Wright

2019 ◽  
Author(s):  
Marlon A. V. Ramirez ◽  
Marcos Sterkel ◽  
Ademir de Jesus Martins ◽  
José Bento Pereira Lima ◽  
Pedro L. Oliveira

AbstractBlood-sucking insects incorporate many times their body weight of blood in a single meal. As proteins are the major component of vertebrate blood, its digestion in the gut of hematophagous insects generates extremely high concentrations of free amino acids. Previous reports showed that the tyrosine degradation pathway plays an essential role in adapting these animals to blood feeding. Inhibiting 4-hydroxyphenylpyruvate dioxygenase (HPPD), the rate-limiting step of tyrosine degradation, results in the death of insects after a blood meal. Therefore, it was suggested that compounds that block the catabolism of tyrosine could act selectively on blood-feeding insects. Here we have evaluated the toxicity against mosquitoes of three HPPD inhibitors currently used as herbicides and in human health. Among the compounds tested, nitisinone (NTBC) proved to be more potent than mesotrione (MES) and isoxaflutole (IFT) in Aedes aegypti. NTBC was lethal to Ae. aegypti in artificial feeding assays (LD50: 4.36 µM), as well as in topical application (LD50: 0.0033 nmol/mosquito). NTBC was also lethal to Ae. aegypti populations that were resistant to neurotoxic insecticides, and it was lethal to other mosquito species (Anopheles and Culex). Therefore, HPPD inhibitors, particularly NTBC, represent promising new drugs for mosquito control. Since they only affect blood-feeding organisms, they would represent a safer and more environmentally friendly alternative to conventional neurotoxic insecticides.Author SummaryThe control of mosquitoes has been pursued in the last decades by the use of neurotoxic insecticides to prevent the spreading of dengue, zika and malaria, among other diseases. However, the selection and propagation of different mechanisms of resistance hinder the success of these compounds. New methodologies are needed for their control. Hematophagous arthropods, including mosquitoes, ingest quantities of blood that represent many times their body weight in a single meal, releasing huge amounts of amino acids during digestion. Recent studies showed that inhibition of the tyrosine catabolism pathway could be a new selective target for vector control. Thus we tested three different inhibitors of the second enzyme in the tyrosine degradation pathway as tools for mosquito control. Results showed that Nitisinone (NTBC), an inhibitor used in medicine, was the most potent of them. NTBC was lethal to Aedes aegypti when it was administered together with the blood meal and when it was topically applied. It also caused the death of Anopheles aquasalis and Culex quinquefasciatus mosquitoes, as well as field-collected Aedes populations resistant to neurotoxic insecticides, indicating that there is no cross-resistance. We discuss the possible use of NTBC as a new insecticide.


Sign in / Sign up

Export Citation Format

Share Document