meal size
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 31)

H-INDEX

61
(FIVE YEARS 2)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 238
Author(s):  
Marleen A. H. Lentjes ◽  
Linda M. Oude Griep ◽  
Angela A. Mulligan ◽  
Scott Montgomery ◽  
Nick J. Wareham ◽  
...  

In a cross-sectional analysis of a population-based cohort (United Kingdom, N = 21,318, 1993–1998), we studied how associations between meal patterns and non-fasting triglyceride and glucose concentrations were influenced by the hour of day at which the blood sample was collected to ascertain face validity of reported meal patterns, as well as the influence of reporting bias (assessed using formula of energy expenditure) on this association. Meal size (i.e., reported energy content), mealtime and meal frequency were reported using pre-structured 7-day diet diaries. In ANCOVA, sex-specific means of biomarker concentrations were calculated by hour of blood sample collection for quartiles of reported energy intake at breakfast, lunch and dinner (meal size). Significant interactions were observed between breakfast size, sampling time and triglyceride concentrations and between lunch size, sampling time and triglyceride, as well as glucose concentrations. Those skipping breakfast had the lowest triglyceride concentrations in the morning and those skipping lunch had the lowest triglyceride and glucose concentrations in the afternoon, especially among acceptable energy reporters. Eating and drinking occasion frequency was weakly associated with glucose concentrations in women and positively associated with triglyceride concentrations in both sexes; stronger associations were observed for larger vs. smaller meals and among acceptable energy reporters. Associations between meal patterns and concentration biomarkers can be observed when accounting for diurnal variation and underreporting. These findings support the use of 7-day diet diaries for studying associations between meal patterns and health.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2598
Author(s):  
Élisabeth Chassé ◽  
Frédéric Guay ◽  
Knud Erik Bach Bach Knudsen ◽  
Ruurd T. Zijlstra ◽  
Marie-Pierre Létourneau-Montminy

Nutritional values of ingredients have been and still are the subject of many studies to reduce security margins of nutrients when formulating diets to reduce feed cost. In most studies, pigs are fed a limited amount of feed in a limited number of meals that do not represent how pigs are fed in commercial farm conditions. With free access to feed, pigs follow their intrinsic feeding behaviour. Feed intake is regulated by satiety and satiation signals. Reducing the feed intake level or feeding frequency can affect digestibility and transit time and induce metabolic changes. To reduce feed costs, alternative ingredients that are frequently rich in dietary fibre are added to diets. Fibre acts on the digestion process and transit time by decreasing energy density and causing viscosity. Various analyses of fibre can be realised, and the measured fibre fraction can vary. Exogenous enzymes can be added to counteract the effect of fibre, but digestive tract conditions, influenced by meal size and frequency, can affect the efficiency of supplemented enzymes. In conclusion, the frequency and size of the meals can affect the digestibility of nutrients by modulating gastrointestinal tract conditions (pH and transit time), metabolites (glucose and short-chain fatty acids) and hormones (glucagon-like peptide 1 and peptide tyrosine tyrosine).


Appetite ◽  
2021 ◽  
pp. 105493
Author(s):  
Annika N. Flynn ◽  
Kevin D. Hall ◽  
Amber Courville ◽  
Peter J. Rogers ◽  
Jeffrey M. Brunstrom

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 693-P
Author(s):  
PAUL GIMENEZ ◽  
SYLVAIN LACHAL ◽  
YOUSRA TOURKI ◽  
SYLVIA FRANC ◽  
CORALIE AMADOU ◽  
...  

2021 ◽  
Author(s):  
Petra Schattanek ◽  
Sophie Anna Riccabona ◽  
Oskar Rennstam Rubbmark ◽  
Michael Traugott
Keyword(s):  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 844
Author(s):  
Amanda J. Page

Gastrointestinal vagal afferents (VAs) play an important role in food intake regulation, providing the brain with information on the amount and nutrient composition of a meal. This is processed, eventually leading to meal termination. The response of gastric VAs, to food-related stimuli, is under circadian control and fluctuates depending on the time of day. These rhythms are highly correlated with meal size, with a nadir in VA sensitivity and increase in meal size during the dark phase and a peak in sensitivity and decrease in meal size during the light phase in mice. These rhythms are disrupted in diet-induced obesity and simulated shift work conditions and associated with disrupted food intake patterns. In diet-induced obesity the dampened responses during the light phase are not simply reversed by reverting back to a normal diet. However, time restricted feeding prevents loss of diurnal rhythms in VA signalling in high fat diet-fed mice and, therefore, provides a potential strategy to reset diurnal rhythms in VA signalling to a pre-obese phenotype. This review discusses the role of the circadian system in the regulation of gastrointestinal VA signals and the impact of factors, such as diet-induced obesity and shift work, on these rhythms.


2021 ◽  
pp. 193229682199011
Author(s):  
Travis Diamond ◽  
Faye Cameron ◽  
B. Wayne Bequette

Background: Artificial pancreas (AP) systems reduce the treatment burden of Type 1 Diabetes by automatically regulating blood glucose (BG) levels. While many disturbances stand in the way of fully closed-loop (automated) control, unannounced meals remain the greatest challenge. Furthermore, different types of meals can have significantly different glucose responses, further increasing the uncertainty surrounding the meal. Methods: Effective attenuation of a meal requires quick and accurate insulin delivery because of slow insulin action relative to meal effects on BG. The proposed Variable Hump (VH) model adapts to meals of varying compositions by inferring both meal size and shape. To appropriately address the uncertainty of meal size, the model divides meal absorption into two disjoint regions: a region with coarse meal size predictions followed by a fine-grain region where predictions are fine-tuned by adapting to the meal shape. Results: Using gold-standard triple tracer meal data, the proposed VH model is compared to three simpler second-order response models. The proposed VH model increased model fit capacity by 22% and prediction accuracy by 12% relative to the next best models. A 47% increase in the accuracy of uncertainty predictions was also found. In a simple control scenario, the controller governed by the proposed VH model provided insulin just as fast or faster than the controller governed by the other models in four out of the six meals. While the controllers governed by the other models all delivered at least a 25% excess of insulin at their worst, the VH model controller only delivered 9% excess at its worst. Conclusions: The VH Model performed best in accuracy metrics and succeeded over the other models in providing insulin quickly and accurately in a simple implementation. Use in an AP system may improve prediction accuracy and lead to better control around mealtimes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Soohong Min ◽  
Yangkyun Oh ◽  
Pushpa Verma ◽  
Samuel C Whitehead ◽  
Nilay Yapici ◽  
...  

Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns, and identify a key role for Drosophila Piezo in internal organ mechanosensation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246569
Author(s):  
Yakshkumar Dilipbhai Rathod ◽  
Mauricio Di Fulvio

The feeding pattern and control of energy intake in mice housed in groups are poorly understood. Here, we determined and quantified the normal feeding microstructure of social male and female mice of the C57BL/6J genetic background fed a chow diet. Mice at 10w, 20w and 30w of age showed the expected increase in lean and fat mass, being the latter more pronounced and variable in males than in females. Under ad libitum conditions, 20w and 30w old females housed in groups showed significantly increased daily energy intake when adjusted to body weight relative to age-matched males. This was the combined result of small increases in energy intake during the nocturnal and diurnal photoperiods of the day without major changes in the circadian pattern of energy intake or spontaneous ambulatory activity. The analysis of the feeding microstructure suggests sex- and age-related contributions of meal size, meal frequency and intermeal interval to the control of energy intake under stable energy balance, but not under negative energy balance imposed by prolonged fasting. During the night, 10-20w old females ate less frequently bigger meals and spent more time eating them resulting in reduced net energy intake relative to age-matched males. In addition, male and female mice at all ages tested significantly shortened the intermeal interval during the first hours of re-feeding in response to fasting without affecting meal size. Further, 20-30w old males lengthened their intermeal interval as re-feeding time increased to reach fed-levels faster than age-matched females. Collectively, our results suggest that the physiological mechanisms controlling meal size (satiation) and the non-eating time spent between meals (satiety) during stable or negative energy balance are regulated in a sex- and age-dependent manner in social mice.


Sign in / Sign up

Export Citation Format

Share Document