No-Solvent Oil-in-Water Analysis - A Robust Alternative to Conventional Solvent Extraction Methods

2011 ◽  
Author(s):  
Dale F. Brost ◽  
Amy Foster ◽  
Michael Holmes



2014 ◽  
Vol 79 (2) ◽  
pp. C138-C146 ◽  
Author(s):  
El-Sayed M. Abdel-Aal ◽  
Humayoun Akhtar ◽  
Iwona Rabalski ◽  
Michael Bryan


2019 ◽  
Vol 891 ◽  
pp. 83-89
Author(s):  
Attapon Nitiwattananon ◽  
Saipin Thanachasai

In this study, ultrasound-assisted extraction (UAE) was compared with conventional extraction methods, including conventional solvent extraction without agitation (CSE), conventional solvent extraction with agitation at 50 rpm (CSE50) and 150 rpm (CSE150), for the extraction of phenolic compounds from coconut (Cocos nucifera L.) husk. The extraction yield, total phenolic content (TPC) and total flavonoid content (TFC) were examined. The antioxidant capacity of C. nucifera extracts was determined by using 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Experimental results showed that UAE gave the highest extraction yield, TPC, TFC and antioxidant capacities (ABTS and DPPH), followed by CSE150, CSE50 and CSE, respectively. UAE was found to be more effective than conventional extraction methods. Conventional solvent extraction with higher agitation speed exhibited higher extraction efficiency than those with lower agitation speed and without agitation.



Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1019 ◽  
Author(s):  
Jayesree Nagarajan ◽  
Hang Pui Kay ◽  
Nagendra Prasad Krishnamurthy ◽  
Nagasundara Ramanan Ramakrishnan ◽  
Turki M. S. Aldawoud ◽  
...  

Agro-industrial waste is a largely untapped natural resource of bioactive compounds including carotenoids and pectin. However, conventional solvent extraction involves the excessive use of organic solvents, costly equipment, and tedious operation. These limitations of conventional extraction methods could be prospectively overcome by the carotenoid–pectin hydrocolloidal complexation. The complexation of lycopene and pectin was efficiently promoted in an aqueous environment, resulting in the colloidal complexes that can be subsequently recovered by sedimentation or centrifugation. In this study, the potential of carotenoid–pectin complexation on tomato pomace containing carotenoids and pectin was evaluated. Tomato pomace is a rich source of lycopene, β-carotene as well as pectin, making it suitable as the raw material for the carotenoid extraction. The extraction of carotenoid and pectin from tomato pomace was optimized using response surface methodology. The maximum recovery was 9.43 mg carotenoid fractions/100 g tomato pomace, while the purity of carotenoid-rich fractions was 92%. The antioxidant capacity of carotenoids extracted from the complexation method was found to be higher than that from the solvent extraction method. Moreover, extraction yield and antioxidant capacity of carotenoid obtained from the carotenoid–pectin complexation were comparable to that from solvent extraction. The carotenoid–pectin complexation is a promising green approach to valorize agro by-products for the extraction of valuable carotenoids.



1983 ◽  
Vol 15 (6-7) ◽  
pp. 149-159 ◽  
Author(s):  
V C Blok ◽  
G P Slater ◽  
E M Giblin

Several commercially available adsorbents were compared with solvent extraction methods for their utility in recovering trace organics from water. The adsorbents examined included Amberlite XAD-2, XAD-4 and XAD-8, Ambersorb XE340 and XE348 and Tenax-GC. All were found to produce high artifact levels, even after extensive clean-up, making them unsuitable for the analysis of trace organics in water. Quantitatively, Likens-Nickerson or continuous liquid-liquid extraction with méthylene chloride gave better recoveries than the adsorbents. Qualitatively, extractive methods were preferred as they yielded much lower levels of impurities than the adsorbents. These methods of recovering trace organics were evaluated using a standard mixture of compounds added to the water at a level of 55 µg/l. Likens-Nickerson extraction gave comparable recoveries of this mixture at 55 µg/l and 11 µg/l.



Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1290
Author(s):  
Noha Khalil ◽  
Mokhtar Bishr ◽  
Mohamed El-Degwy ◽  
Mohamed Abdelhady ◽  
Mohamed Amin ◽  
...  

Background: Khella (Ammi visnaga Lam.) fruits (Apiaceae) are rich in furanochromones, mainly khellin and visnagin, and are thus incorporated in several pharmaceutical products used mainly for treatment of renal stones. Methods: The objective of this study was to compare the yield of khellin and visnagin obtained using different conventional solvents and supercritical fluid extraction (SCFE) with carbon dioxide (containing 5% methanol as co-solvent). Water, acetone and ethanol (30% and 95%) were selected as conventional solvents. Results: Highest extract yield was obtained from 30% ethanol (15.44%), while SCFE gave the lowest yield (4.50%). However, the percentage of furanochromones were highest in SCFE (30.1%), and lowest in boiling water extract (5.95%). HPLC analysis of conventional solvent extracts showed other coumarins that did not appear in supercritical fluid extraction chromatogram due to non-selectivity of solvent extraction. Ammi visnaga extracts as well as standard khellin and visnagin were tested for their cytotoxic activity using sulforhodamine B assay on breast cancer (MCF-7) and hepatocellular carcinoma (Hep G2) cell lines. Results revealed a strong cytotoxic activity (IC50 < 20 µg/mL) for the SCFE and standard compounds (khellin and visnagin) (IC50 ranging between 12.54 ± 0.57 and 17.53 ± 1.03 µg/mL). However, ethanol and acetone extracts had moderate cytotoxic activity (IC50 20–90 µg/mL) and aqueous extract had a weak activity (IC50 > 90 µg/mL). Conclusions: Thus, supercritical fluid extraction is an efficient, relatively safe, and cheap technique that yielded a more selective purified extract with better cytotoxic activity.





Sign in / Sign up

Export Citation Format

Share Document