Triple MPD Technique for Drilling and Intelligent Completion Deployment on an Abandoned Deepwater Well

2021 ◽  
Author(s):  
André Alonso Fernandes ◽  
Eduardo Schnitzler ◽  
Fabio Fabri ◽  
Leandro Grabarski ◽  
Marcos Vinicius Barreto Malfitani ◽  
...  

Abstract This is a case study of a presalt well that required the use of 3 different MPD techniques to achieve its goals. The well was temporary abandoned when conventional techniques failed to reach the final depth. Total fluid losses in the reservoir section required changing the well design and its completion architecture. The new open hole intelligent completion design had to be used to deliver the selective completion in this challenging scenario. From the hundreds of wells drilled in the Santos basin presalt, there are some wells with tight or no operational drilling window. In order to drill these wells different MPD techniques are used. In most cases, the use of Surface Backpressure (SBP) technique is suitable for drilling the wells to its final depth. For the more complex cases, when higher fluid loss rates occur, the use of SBP and Pressurized Mud Cap Drilling (PMCD) enables the achievement of the drilling and completion objectives. After the temporary abandonment of this specific well in 2018, the uncertainty of the pore pressure could not ensure that the SBP and PMCD techniques would be applicable when reentering the well. To avoid difficult loss control operations, the completion team changed the intelligent completion design to include a separated lower completion, enabling its installation with the MPD system. Besides the previously used MPD techniques, the integrated final project considered an additional technique, Floating Mud Cap Drilling (FMCD), as one of the possible contingencies for the drilling and completion phases. Well reentry and drilling of the remaining reservoir section included the use all the previously mentioned MPD techniques (SBP, PMCD and FMCD). The lower completion deployment utilized the FMCD technique to isolate the formation quickly and efficiently, without damaging the reservoir. The planning and execution of the well faced additional difficulties due to the worldwide pandemic and personnel restrictions. The success from the operation was complete with no safety related events and within the planned budget. At the end, the execution team delivered a highly productive well with an intelligent completion system fully functional, through an integrated and comprehensive approach. MPD use on deepwater wells is relatively new. Different operators used several approaches and MPD techniques to ensure safety and success during wells constructions over the last decade. This paper demonstrates the evolution of MPD techniques usage on deepwater wells.

2021 ◽  
Author(s):  
Eduardo Schnitzler ◽  
Luciano Ferreira Gonçalez ◽  
Roger Savoldi Roman ◽  
Marcello Marques ◽  
Fábio Rosas Gutterres ◽  
...  

Abstract This paper describes the challenges faced on the deployment of intelligent well completion (IWC) systems in some of the wells built in Buzios field, mostly related to heavy fluid losses that occurred during the well construction. It also presents the solutions used to overcome them. This kind of event affects not only drilling and casing cementing operations, but may also prevent a safe and efficient installation of the completion system as initially designed. The IWC design typically used in Brazilian pre-salt areas comprises cased hole wells. Perforation operations must be performed before installing the integral completion system, as it does not include a separation between upper and lower completion. Therefore, the reservoir remains communicated to the wellbore during the whole completion installation process, frequently requiring prior fluid loss control as to allow safe deployment. Rock characteristics found in this field make it difficult to effectively control losses in some of the wells, requiring the use of different well construction practices that led to the development of some new well designs. The well engineering team developed a new well concept, where a separated lower completion system is installed in open hole, delivering temporary reservoir isolation. This new well architecture not only delivers reduced drilling and completion duration and costs, but also provides the IWC features in wells with major fluid losses. This is possible by the use of multiple managed pressure drilling (MPD) techniques when required, which were considered since the initial design phase. Safe and effective construction of some wells in pre-salt fields was considered not feasible before the adoption of MPD solutions, both for drilling and completions. Other important aspects considered on the new well design are the large thickness and high productivity of Buzios field reservoirs, as well as the need of some flexibility to deal with uncertainties. Finally, the new completion project was also designed to improve performance and safety on future challenging heavy workover interventions. The well construction area has gradually obtained improved performance in Buzios field with the adoption of the new practices and well design presented in this paper. The new solutions developed for Buzios field have set a new drilling and completion philosophy for pre-salt wells, setting the grounds for future projects. The improved performance is essential to keep these deepwater projects competitive, especially in challenging oil price scenarios. One of the groundbreaking solutions used is the possibility of installing the lower completion using managed pressure drilling techniques.


2014 ◽  
Vol 2 (1) ◽  
pp. SB45-SB55 ◽  
Author(s):  
Fernando Enrique Ziegler ◽  
John F. Jones

In this case study, the overburden, pore-pressure, and fracture gradients are calculated for several nearby analog wells and subsequently used to generate a predrill pore-pressure prediction for the deepwater subsalt Gulf of Mexico well, Flying Dutchman, located in Green Canyon 511 no. 1 (OCS-G 22971). Two key analog wells penetrated the lower Miocene and have sufficient data to generate pore-pressure profiles. Subsequently, the predrill pore-pressure prediction is found to be in good agreement with the pore pressure estimated from well logs while drilling. During the drilling phase of the Flying Dutchman well, two zones of significant fluid loss and wellbore breathing were encountered and are evaluated as a means of determining the formation types where they are most likely to occur, as well as their related minimum horizontal stress and fracture gradient.


2016 ◽  
Author(s):  
Hung Vu ◽  
Son Tran ◽  
Trang Nguyen ◽  
Bharathwaj Kannan ◽  
Khoa Tran ◽  
...  

ABSTRACT Application of openhole sand control technology is becoming mandatory in the field, particularly with the given uncertainty in geomechanics, challenges to wellbore integrity while drilling, and sand production during the life of the well. The completion equipment readiness and success of the installation can be challenging in the event of extending the horizontal section to accommodate geological heterogeneity and maximizing well productivity. This paper discusses operational excellence recorded in Well A, in the Thang Long Field, offshore Vietnam, from well design perspectives ensuring maximum reservoir contact to outcome of well completion. The well was targeted in the Oligocene reservoir, a thin oil rim with large gas cap overlay, and required drilling and completion for 1126 m horizontal length of 8 1/2-in. open hole. The completion design included multiple swellable packers for isolation of unwanted zones, 6 5/8-in. basepipe sand screens for the production zones, and a fluid loss control device to help prevent undesirable losses. Several torque and drag simulations were performed to help predict potential threats that could be encountered during completion string deployment or during space out of the inner wash pipe string. One apparent challenge of this completion design was to deploy the lower completion string to total depth (TD) per stringent reservoir requirements, resulting in an approximate 1126 m length of the string in the horizontal section. Another task was to facilitate manipulating 1130 m of wash pipe inside the completion string to locate the seal assemblies accurately at the corresponding seal bore extension positions for effective acidizing treatment. Although these were long sections of completion string and wash pipe, the quality of acidizing stimulation to effectively remove mud cake should not be compromised to ensure positive production rates. During operations, the completion string was run to target depth without any issue, and the wash pipe was spaced out and manipulated correctly. These operations subsequently led to a successful acidizing treatment and the proper closure of the flapper type fluid loss device. The completion design and operation were concluded successfully, significantly contributing to field production performance to date. The novelty of the completion design and installation is the ability to deploy an 1126-m lower completion in long, highly deviated and horizontal openhole section coupled with acid stimulation in reasonable time and as per plan.


SPE Journal ◽  
1997 ◽  
Vol 2 (04) ◽  
pp. 417-426 ◽  
Author(s):  
Marcel N. Bouts ◽  
A. Trompert Ruud ◽  
Alan J. Samuel
Keyword(s):  

2014 ◽  
Author(s):  
Catherine Sugden ◽  
William Bacon ◽  
Oscar Gabaldon ◽  
Jose Umberto Arnaud Borges ◽  
Cristiane Maraviha Soares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document