loss control
Recently Published Documents


TOTAL DOCUMENTS

511
(FIVE YEARS 122)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
pp. 2100235
Author(s):  
Libei Liu ◽  
Feifei Zhang ◽  
Shunsuke Murai ◽  
Katsuhisa Tanaka
Keyword(s):  

2021 ◽  
Author(s):  
Md Amanullah ◽  
Raed Alouhali ◽  
Mohammed AlArfaj

Abstract Loss of circulation is one of the greatest challenges that are frequently encountered while drilling. Various types of LCM products are used by the industry to combat loss of circulation. Characterization of these LCM products is very important to select the most suitable products to improve the success rate of LCM treatment jobs. This paper describes the theoretical basis of the application of strain energy along with the development of a strain energy-based mathematical model to create a dedicated software driven novel method and test apparatus for quick and reliable measurement of the coefficient of resiliency of various LCM products to improve the likelihood and probability of success rate of LCM treatment jobs. The simple but reliable method and apparatus provide a fit-for-purpose solution for additional characterization of LCM products. The design and construction of the test device and the development of the method considered the most critical technical factors that have high impact on data reliability, data accuracy, repeatability and data sensitivity. The components of the test device were selected based on technical, economical, portability and ease of operation using a dedicated software driven method and data acquisition system. Experimental results generated by loading and unloading a particular mass of a LCM product under a constant displacement rate of the loading foot of the test apparatus demonstrated the suitability of the method and the apparatus in determining the coefficient of resiliency of LCM products. Based on the area below the loading curve i.e. the strain energy absorbed during the loading cycle and the area below the unloading curve i.e. the strain energy desorbed during the unloading cycle, the data acquisition software automatically calculates the coefficient of resiliency of the LCM products. The resilient characteristic of LCM products is one of the critical factors that is very important for high performance pill or slurry design to enhance the seal/plug stability. Hence, the newly developed method and apparatus will play a positive role to improve the probability and the likelihood of creating a stable and lasting seal/plug in the loss zones. As loss control materials with good resilient properties are highly adaptable in changing stress and pressure conditions, this method can provide appropriate guidelines to mud chemists, mud engineers and mud consultants in designing high performance LCM blends or slurries to combat moderate and severe loss of circulation.


2021 ◽  
Author(s):  
Raymond Saragi ◽  
Mohammad Husien ◽  
Dalia Salim Abdullah ◽  
Ryan McLaughlin ◽  
Ian Patey ◽  
...  

Abstract A study was carried out to examine formation damage mechanisms caused by drilling fluids in tight reservoirs in several onshore oil fields in Abu Dhabi. Three phases of compatibility corefloods were carried out to identify potential to improve hydrocarbon recovery and examine reformulated/alternate drilling muds and treatment fluids. Interpretation was aided by novel Nano-CT quantifications and visualisations. The first phase examined the current drilling muds and showed inconsistent filtrate loss control alongside high levels of permeability alteration. These alterations were caused by retention of drilling mud constituents in the near-wellbore and incomplete clean-up of drilling mud-cakes. Based upon these results, reformulated and alternate drilling muds were examined in Phase 2, and there was a positive impact upon both filtrate loss and permeability, although the Nano-CT quantifications and visualisations showed that drilling mud constituents were still having an impact upon permeability. Candidate treatment fluids were examined in Phase 3, with all having a positive impact and the best performance coming from 15% HCl and an enzyme-based treatment. The interpretative tools showed that these treatments had removed drilling mud-cakes, created wormholes, and bypassed the areas where constituents were retained. The compatibility corefloods on tight reservoir core, alongside high-resolution quantifications and visualisations, therefore identified damaging mechanisms, helped identify potential to improve hydrocarbon recovery, and identify treatment fluid options which could be used in the fields.


2021 ◽  
Author(s):  
Arnaud Cadix ◽  
Steven Meeker ◽  
Swati Kaushik ◽  
Elodie Haumesser ◽  
Guillaume Ovarlez

Abstract Fluid loss control additives are critical constituents in a cement slurry formulation to ensure even cement placement and ultimately satisfactory zonal isolation. Many technological options have been developed over the past decades to design fluid loss control additives for cementing. The most popular technologies as of today are either based on water soluble polymers or colloidal particles like latexes. As an alternative approach, in this paper we introduce a new technology based on associative or "sticky" microgels. These microgels are able to associate with one another at elevated concentration but, more surprisingly, are also able to associate under shear in the dilute regime during a filtration process. As a consequence these additives demonstrate outstanding performance as fluid loss control agents. This study focuses first on standard API filtration tests using sticky microgels, and on how their behavior in application differs from traditional systems, in particular water-based soluble polymers such as cellulosic derivatives or synthetic polymers. Our investigations then focus on the working mechanism of the microgel system by analyzing adsorption on the cement surface, rheology, and filter cake structure using Mercury Intrusion Porosimetry (MIP). Finally the behavior of sticky microgels in model filtration tests is explored with either filtration against porous ceramic discs or using microfluidic chips allowing a direct visualization of microgels during filtration. This study demonstrates that associative microgels are not controlling fluid loss through a simple size match between particles and pores within the filter cake but rather through shear-induced aggregation. Microfluidic observations reveal that aggregation occurs irreversibly as microgels are forced through the pores as the filtration process occurs. The shear-induced associated gels are particularly effective at reducing dramatically the filter cake permeability and allowing gas migration control. Interestingly the shear-induced aggregation of associative μgels seems to confer self-adaptive properties of the fluid loss additives with respect to the pore network to be clogged. Indeed, formation of shear aggregated gels larger than the individual microgels can be used to limit fluid loss even if the pore sizes are much larger than the individual microgels.


2021 ◽  
Author(s):  
Alexandra Clare Morrison ◽  
Conan King ◽  
Kevin Rodrigue

Abstract A combination of divalent base brine and high wellbore temperature presents significant challenges for high density aqueous reservoir drilling fluids. Such systems traditionally use biopolymers as viscosifiers; however, they are subject to degradation at elevated temperatures. Non-aqueous drilling fluids are thermally stable but complete removal of the filtercake is challenging and this can lead to formation damage. This paper describes the qualification and first deepwater drilling application of a unique aqueous reservoir drilling fluid at temperatures above 320°F. A high-temperature divalent brine-based reservoir drilling fluid (HT-RDF) and a solids-free screen running fluid (SF-SRF) were designed, both utilizing the same novel synthetic polymer technology. Calcium bromide brine was selected for use to minimize the total amount of acid-soluble solids in the drilling fluid. A comprehensive qualification was undertaken examining parameters such as rheology performance across a range of temperatures, long-term stability, fluid loss under expected and stress conditions (16 hours at 356°F), production screen test (PST), and various fluid-fluid compatibility tests. Return permeability tests were conducted on the final formulations to validate their suitability for use. The synthetic polymer technology provided excellent rheology, suspension, and fluid loss control in the fluid systems designed in the laboratory. To prepare for field execution multiple yard mixes were performed to verify the laboratory results on a larger scale. Additionally, a flow loop system was utilized to evaluate fluid performance under simulated downhole temperature and pressure conditions before field deployment. The final high temperature drilling fluid as designed provided rheological properties that met the necessary equivalent circulating density (ECD) requirements while drilling the reservoir. The fluid loss remained extremely stable and there were no downhole losses despite the depleted nature of the wellbore. Production screens were run straight to total depth (TD) with no wellbore stability issues after a three-day logging campaign. High temperature aqueous reservoir drilling fluids have historically been limited by the lack of suitable viscosifiers and fluid loss control additives. This paper outlines the design, mixing and logistical considerations and field execution of a novel polymer-based reservoir drilling fluid.


2021 ◽  
Author(s):  
Mobeen Murtaza ◽  
Zeeshan Tariq ◽  
Muhammad Shahzad Kamal ◽  
Muhammad Mahmoud ◽  
Dhafer Al Sheri

Abstract Maintain wellbore stability is a very critical aspect of the drilling operation. The unstable wellbore provides severe loss to the drilling operators in terms of time and money. One of the significant reasons for unstable wellbore occurs due to the expansion of shale formation. Several solutions are utilized to tackle the expansion of shales, such as salts, PHPA, silicates, and oil-based drilling fluids. There are limitations associated with these solutions, such as thermal instability, limited supply, unfriendly to the environment and marine life, etc. In this study, Okra mucilage has been introduced as a shale swelling inhibitor in drilling fluids. Okra is widely used in the medical and food industries as a viscosifier as it is abundantly available in tropical and subtropical regions. Okra powder has been used as a fluid loss control additive in the literature. The application of the Okra solution as a shale swelling inhibitor in drilling fluids was not investigated in the past. In this study, Okra mucilage was extracted from the Okra plant and used as shale swelling inhibitor. Three different concentrations (5, 10 & 20) vol% of Okra mucilage mixed solutions were used for linear swell test. The test was performed using a linear swell tester at atmospheric conditions for 24 hours on bentonite wafers. Further zeta potential, particles size and capillary suction timer test (CST) were conducted. The experimental study revealed that Okra mucilage reduced the swelling of bentonite. For instance, 10 and 20% of Okra mucilage solutions reduced the swelling by 36.8% and 50.5%, respectively. The Okra mucilage decreased the zeta potential of clay and increased its particle size. CST time decreased initial at low concentration and increased with concentration. Overall, experimental investigations suggested that Okra mucilage could be an alternate green shale inhibitor in drilling fluids without compromising other drilling fluids' properties.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1264
Author(s):  
Fabing Xie ◽  
Guangju Zhao ◽  
Xingmin Mu ◽  
Peng Tian ◽  
Peng Gao ◽  
...  

Soil erosion has become the dominant environmental issue endangering sustainable development in agriculture and the ecosystem on the Loess Plateau. Determination of watershed soil erosion rates and sediment yields is essential for reasonable utilization of water resources and soil loss control. In this study, we employed unmanned aerial vehicles (UAVs) and structure-from-motion (SfM) photogrammetry to determine the sediment yields in 24 dam-controlled watersheds in the Pisha sandstone region of the northern Loess Plateau. High differences in total sediment were trapped before the check dams due to their running periods and sediment yields. The estimated specific sediment yield ranged from 34.32 t/(ha∙a) to 123.80 t/(ha∙a) with an average of 63.55 t/(ha∙a), which indicated that the Pisha sandstone region had an intense soil erosion rate. Furthermore, the modified Sediment Distributed Delivery (SEDD) model was applied to identify the erosion-prone areas in the watersheds, and the sediment retained in the check dams were used for model calibration. The performance of the model was acceptable, and the modeling results indicated that the steep Pisha sandstone was the major sediment source for the watersheds, accounting for approximately 87.37% of the sediment yield. Catchment area, erosive precipitation, and badland proportion were the key factors for sediment yield in the dam-controlled watersheds of the Pisha sandstone region, according to multiple regression analyses. These findings indicated that the modified SEDD model is very efficient in identifying spatial heterogeneities of sediment yield in the watershed but requires comprehensive calibration and validation with long-term observations. The Pisha sandstone region is still the key area of soil erosion control in the Loess Plateau, which needs more attention for soil and water conservation due to high sediment yield.


2021 ◽  
Vol 4 ◽  
Author(s):  
Yifu Qiu ◽  
Yitao Qiu ◽  
Yicong Yuan ◽  
Zheng Chen ◽  
Raymond Lee

Reinforcement Learning (RL) based machine trading attracts a rich profusion of interest. However, in the existing research, RL in the day-trade task suffers from the noisy financial movement in the short time scale, difficulty in order settlement, and expensive action search in a continuous-value space. This paper introduced an end-to-end RL intraday trading agent, namely QF-TraderNet, based on the quantum finance theory (QFT) and deep reinforcement learning. We proposed a novel design for the intraday RL trader’s action space, inspired by the Quantum Price Levels (QPLs). Our action space design also brings the model a learnable profit-and-loss control strategy. QF-TraderNet composes two neural networks: 1) A long short term memory networks for the feature learning of financial time series; 2) a policy generator network (PGN) for generating the distribution of actions. The profitability and robustness of QF-TraderNet have been verified in multi-type financial datasets, including FOREX, metals, crude oil, and financial indices. The experimental results demonstrate that QF-TraderNet outperforms other baselines in terms of cumulative price returns and Sharpe Ratio, and the robustness in the acceidential market shift.


2021 ◽  
Vol 35 (3) ◽  
pp. 235-250
Author(s):  
Jianghong Wu ◽  
Min Zhang ◽  
Bhesh Bhandari ◽  
Chao-hui Yang

Sign in / Sign up

Export Citation Format

Share Document