Application of Dynamic Underbalance Perforating technique on a Drillstem Test string in Combination with a Non-damaging Viscoelastic Surfactant-Based Fluid Loss Control Pill: Case Study from Western Siberia

2012 ◽  
Author(s):  
Kim J. Gobert ◽  
Yurii Pyatigorets ◽  
N. Krunic ◽  
Mourad Amanov ◽  
Mikhail Belov ◽  
...  
2021 ◽  
Author(s):  
André Alonso Fernandes ◽  
Eduardo Schnitzler ◽  
Fabio Fabri ◽  
Leandro Grabarski ◽  
Marcos Vinicius Barreto Malfitani ◽  
...  

Abstract This is a case study of a presalt well that required the use of 3 different MPD techniques to achieve its goals. The well was temporary abandoned when conventional techniques failed to reach the final depth. Total fluid losses in the reservoir section required changing the well design and its completion architecture. The new open hole intelligent completion design had to be used to deliver the selective completion in this challenging scenario. From the hundreds of wells drilled in the Santos basin presalt, there are some wells with tight or no operational drilling window. In order to drill these wells different MPD techniques are used. In most cases, the use of Surface Backpressure (SBP) technique is suitable for drilling the wells to its final depth. For the more complex cases, when higher fluid loss rates occur, the use of SBP and Pressurized Mud Cap Drilling (PMCD) enables the achievement of the drilling and completion objectives. After the temporary abandonment of this specific well in 2018, the uncertainty of the pore pressure could not ensure that the SBP and PMCD techniques would be applicable when reentering the well. To avoid difficult loss control operations, the completion team changed the intelligent completion design to include a separated lower completion, enabling its installation with the MPD system. Besides the previously used MPD techniques, the integrated final project considered an additional technique, Floating Mud Cap Drilling (FMCD), as one of the possible contingencies for the drilling and completion phases. Well reentry and drilling of the remaining reservoir section included the use all the previously mentioned MPD techniques (SBP, PMCD and FMCD). The lower completion deployment utilized the FMCD technique to isolate the formation quickly and efficiently, without damaging the reservoir. The planning and execution of the well faced additional difficulties due to the worldwide pandemic and personnel restrictions. The success from the operation was complete with no safety related events and within the planned budget. At the end, the execution team delivered a highly productive well with an intelligent completion system fully functional, through an integrated and comprehensive approach. MPD use on deepwater wells is relatively new. Different operators used several approaches and MPD techniques to ensure safety and success during wells constructions over the last decade. This paper demonstrates the evolution of MPD techniques usage on deepwater wells.


2009 ◽  
Vol 24 (01) ◽  
pp. 60-65 ◽  
Author(s):  
Tianping Huang ◽  
James B. Crews

SPE Journal ◽  
1997 ◽  
Vol 2 (04) ◽  
pp. 417-426 ◽  
Author(s):  
Marcel N. Bouts ◽  
A. Trompert Ruud ◽  
Alan J. Samuel
Keyword(s):  

2018 ◽  
Vol 9 (3) ◽  
pp. 23-31 ◽  
Author(s):  
Misbah Biltayib Biltayib ◽  
Rashidi Masoud ◽  
Balhasan Saad ◽  
Alothman Reem ◽  
S. Kabuli Mufazzal

2021 ◽  
Author(s):  
Sufyan Deshmukh ◽  
Marcelo Dourado Motta ◽  
Sameer Prabhudesai ◽  
Mehul Patil ◽  
Yogesh Kumar ◽  
...  

Abstract A unique invert emulsion fluid (IEF) weighted up with treated micronized weighting agent (MWA) slurries has been developed and successfully implemented in the field as a completion and testing fluid. The utilization of this unique IEF by design allowed the fluid properties to be lower on viscosity and superior suspension characteristics, which allowed for thermally stable fluid and provided excellent downhole hydraulics performance. Much of the earlier development and deployment of this type of IEF was focused on drilling for sections in narrow mud weight and fracture gradient windows, coiled tubing operations, managed pressure drilling, and extended reach wells. Many of these drilling challenges are also encountered in high pressure and high temperature (HTHP) and ultra-deepwater field developments and mature, depleted fields. Early fluid developments focused on designing the fluids chemistry and physics interactions and the optimization of mineralogy of the weighing agent used. There was also some concern on variability of the results seen on the return permeability as well as standard fluid loss experiments. The paper describes the laboratory and field and rigsite data generated while using the MWA in IEFs during completion operations with a client in India. The paper will briefly describe the laboratory work before the application and the associated results observed on the rig site. It will also outline all the challenges which were faced during the execution and mixing of the MWA IEFs. Each separate operation required a high-density reservoir fluid solution above 15.5 ppg [1.85 sg]. Because corrosion, sag potential, and scale were the operator's main concerns, a solids-free brine or other type of weighting agent (for e.g. Calcium Carbonate and/or Tri-Manganese Tetra Oxide) solution was not favored. A high-density IEF designed with MWA allowed us to provide a solution that mitigated against the risks identified in each operation. The thin viscosity profile enabled completion activities to proceed with minimal fluid consumption at surface, reducing the overall environmental impact. The high-density (15.6 ppg [1.86 SG] and 16.2 ppg [1.94 SG]) invert emulsion fluid was designed to minimize sag potential with minimal reservoir damage potential. With a thinner viscosity profile compared to conventional IEFs at equivalent densities, the fluid enabled completion activities with minimal fluid volumes lost over shakers and reduced the environmental impact. The MWA that was used to build the IEF used for drilling and completion fluid enabled maintenance of extremely low-shear rate viscosities when compared to conventional barite-laden fluids. This fluid was used for suspending and abandoning the well in Case Study A, where the reentry and intervention of the well was planned to be after 2 years. After exposure of the fluid in Case Study A, the fluid showed minimum sag after re-entry of the well and the intervention activities were done without any problems. Case Study B showed that the fluid was mixed to the density of 16.2 ppg and was used to perforate and test two different zones. The bottom hole static temperature (BHST) reported were 356 degF (180 degC) for Case Study A and 376 degF (191 degC) for Case Study B respectively. The paper attempts to show the effects of using this alternative weighing agent as a completion fluid instead of a high-density solids-free brine or other solids-laden high-density brines and the associated success, which could be managed if the fluid design is carefully planned.


Author(s):  
Yueqiong Wu ◽  
Zhongyang Luo ◽  
Hong Yin ◽  
Tao Wang

Since the surfactant can form rod-like micelles or even cross-link structures, viscoelastic surfactant (VES) fluid has unique rheological characteristics. The demerits of VES fluids have been proven after being applied as the fracturing fluid for several years. However, the fluid has high fluid loss and a low viscosity at high temperature, which limits the application to hydraulic fracturing. This paper focuses on the VES fluid mixed with nanoparticles which should be an effective way to maintain the viscosity at high temperature and high shear rate. The experiments were based on preparation of uniform and stable nanocolloids, which utilize Microfluidizer high shear fluid processor. Dynamic light scattering and microscopic methods are employed to investigate the stability and micro-structure of the VES fluid. The effects of temperature, shear rate and volume fraction of the nanoparticles on rheology of VES were studied. The SiO2 nanoparticles could significantly improve the rheological performance of VES fluid, although the rheological performance at the temperature over 90 °C needs to be enhanced. The mechanisms of interactions between nanoparticles and micelles are also discussed later in the paper. At the end, the potential of VES fluid mixed with nanoparticles during application in fracturing process was discussed.


2011 ◽  
Vol 361-363 ◽  
pp. 487-492
Author(s):  
Sheng Lai Guo ◽  
Yu Huan Bu

The fluid loss control additive plays a key role in reducing reservoir damage and improving the cementing quality of an oil well. Aiming at good fluid loss control ability and excellent dispersibility, a new dispersive type fluid loss control additive was synthesized through orthogonal experiment with 2-acrylamido-2- methyl propane sulfonic acid, acrylamide, N, N-dimethylacrylamide and maleic anhydride. The orthogonal experiment result shows that the influence on the properties of FLCA decreases in the order: PH value > monomer concentration > monomer mole ratio > initiator concentration > temperature. The result indicates that the optimal conditions for FLCA were 4/2.5/2.5/1 of mole ratio of AMPS/AM /NNDMA/MA, 32.5% total monomer concentration in deionized water, 1.0% (by weight of monomer) ammonium persulfate/sodium bisulfite, 4 of PH value, 40°Cof temperature. The synthesized copolymer was identified by FTIR analysis. The results show the dispersive type fluid loss control additive has excellent dispersibility, fluid loss control ability, thermal resistant and salt tolerant ability. As the temperature increases, the thickening time of the slurry containing the synthesized additive reduces. The copolymer is expected to be a good fluid loss control additive.


2018 ◽  
Vol 5 (9) ◽  
pp. 180490 ◽  
Author(s):  
Shenglai Guo ◽  
Yao Lu ◽  
Yuhuan Bu ◽  
Benlin Li

The retarding side effect and the compatibility with other additives are the main problems that limit the field application of the synthesized fluid loss control additive (FLCA). The effect of the type and content of carboxylic acid groups on the retarding side effect of FLCA and the compatibility between FLCA and the retarder AMPS-IA synthesized using 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and itaconic acid (IA) was studied in this paper. The type and content of carboxylic acid group have a great influence on the fluid loss control ability, the compatibility with retarder and the retarding side effect of FLCA. FLCA containing IA or maleic acid (MA) shows better compatibility with retarder than FLCA containing acrylic acid, but the retarding side effect of FLCA containing MA is weaker than that of FLCA containing IA. Thus, MA is the most suitable monomer for synthesizing FLCA having good compatibility with retarder AMPS-IA.


Sign in / Sign up

Export Citation Format

Share Document