Aeroelastic Modeling of Large Wind Turbines

1976 ◽  
Vol 21 (4) ◽  
pp. 17-27 ◽  
Author(s):  
Peretz P. Friedmann

A set of coupled flap‐lag‐torsional equations of motion for a single wind turbine blade are derived in a general, nonlinear, partial differential form. These equations are suitable for determining the aeroelastic stability or response of large wind turbine blades. Methods for solving the equations together with some possible simplification of the equations are discussed. Finally, the formulation of the complete rotor‐tower aeroelastic problem is considered in general terms.

Author(s):  
Hyeonjeong Ahn ◽  
Hyunkyoung Shin

In 2017, the MHI Vestas released a 9.5-MW offshore wind turbine. It is also actively researching and developing a 10-MW offshore wind turbine. As the capacity of a wind turbine increases, the sizes of all its system components, including length and weight, correspondingly increase. Consequently, as a wind turbine becomes larger, it becomes necessary to analyze the fatigue load applied to its entire system. The first reason for such an analysis is to achieve a safe but not overly designed large wind turbine. Second, most wind turbine accidents involve aging turbines and are related to fatigue analysis. Accordingly, the purpose of fatigue analysis is to safely design a wind turbine that sustains repeated loads within its design life. In this study, the blades and loads for the fatigue analysis of a 12-MW floating offshore wind turbine are calculated based on the National Renewable Energy Laboratory (NREL) 5-MW wind turbine blades. The calculated loads are applied to the Markov matrix through a preprocessing, such as the cycle counting method. Finally, the equivalent fatigue load is estimated based on both mean and range. In this study, only the equivalent fatigue load on the turbine blade is calculated. However, if fatigue analysis is to be performed for all parts using equivalent loads, it is possible to design the wind turbine to fully withstand such loads throughout its design life, and prevent the overdesign of each part as well.


Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.


2021 ◽  
Author(s):  
Alessio Castorrini ◽  
Paolo Venturini ◽  
Fabrizio Gerboni ◽  
Alessandro Corsini ◽  
Franco Rispoli

Abstract Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


Wind Energy ◽  
10.1002/we.55 ◽  
2001 ◽  
Vol 4 (4) ◽  
pp. 183-200 ◽  
Author(s):  
P. K. Chaviaropoulos

Sign in / Sign up

Export Citation Format

Share Document