Finite Element Simulation of a Full-Scale Crash Test of a Composite Helicopter

2002 ◽  
Vol 47 (3) ◽  
pp. 156-168 ◽  
Author(s):  
Edwin L. Fasanella ◽  
Karen E. Jackson ◽  
Karen H. Lyle
SIMULATION ◽  
2002 ◽  
Vol 78 (10) ◽  
pp. 587-599 ◽  
Author(s):  
Ali O. Atahan

Computer simulation of vehicle collisions has improved significantly over the past decade. With advances in computer technology, nonlinear finite element codes, and material models, full-scale simulation of such complex dynamic interactions is becoming ever more possible. In this study, an explicit three-dimensional nonlinear finite element code, LS-DYNA, is used to demonstrate the capabilities of computer simulations to supplement full-scale crash testing. After a failed crash test on a strong-post guardrail system, LS-DYNA is used to simulate the system, determine the potential problems with the design, and develop an improved system that has the potential to satisfy current crash test requirements. After accurately simulating the response behavior of the full-scale crash test, a second simulation study is performed on the system with improved details. Simulation results indicate that the system performs much better compared to the original design.


2015 ◽  
Vol 130 ◽  
pp. 911-917 ◽  
Author(s):  
Z.Q. Lei ◽  
J. Chen ◽  
F.X. Wang ◽  
W.B. Xuan ◽  
T. Wang ◽  
...  

1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


Sign in / Sign up

Export Citation Format

Share Document