Study of a contact problem with normal compliance and nonlocal friction

2012 ◽  
Vol 39 (1) ◽  
pp. 43-55
Author(s):  
Arezki Touzaline
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abderrezak Kasri

Abstract The aim of this paper is to study a quasistatic contact problem between an electro-elastic viscoplastic body with damage and an electrically conductive foundation. The contact is modelled with an electrical condition, normal compliance and the associated version of Coulomb’s law of dry friction in which slip dependent friction is included. We derive a variational formulation for the model and, under a smallness assumption, we prove the existence and uniqueness of a weak solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Mikaël Barboteu ◽  
David Danan

We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions and the theoretical error estimate result.


Sign in / Sign up

Export Citation Format

Share Document