scholarly journals Localization of CGRP and VEGF mRNAs in the mouse superior cervical ganglion during pre- and postnatal development

2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Kazuyuki Mitsuoka ◽  
Yoko Miwa ◽  
Takeshi Kikutani ◽  
Iwao Sato

The neuropeptide calcitonin gene-related peptide (CGRP) mediates inflammation and head pain by influencing the functional vascular blood supply. CGRP is a well-characterized mediator of receptor-regulated neurotransmitter release. However, knowledge regarding the role of CGRP during the development of the superior cervical ganglion (SCG) is limited. In the present study, we observed the localization of CGRP and vascular endothelial growth factor (VEGF-A) mRNAs during prenatal development at embryonic day 14.5 (E14.5), E17.5 and postnatal day 1 (P1) using in situ hybridization. The antisense probe for CGRP was detected by in situ hybridization at E14.5, E17.5, and P1, and the highest levels were detected at E17.5. In contrast, the antisense probe for VEGF-A was detected by in situ hybridization in gradually increasing intensity from E14.5 to P1. The differences in the expression of these two markers revealed specific characteristics related to CGRP concentration and release compared to those of VEGF-A during development. The correlation between CGRP and VEGF-A may influence functional stress and the vascular blood supply during prenatal and postnatal development.

1993 ◽  
Vol 264 (4) ◽  
pp. C995-C1002 ◽  
Author(s):  
W. T. Monacci ◽  
M. J. Merrill ◽  
E. H. Oldfield

Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) is a approximately 43-kDa secreted protein that has been shown in bioassays to induce endothelial proliferation, angiogenesis, and capillary hyperpermeability. VPF has been suggested to play an important role in the physiology of normal vasculature. To further elucidate the natural functions of VPF in vivo, the expression of VPF in normal tissues was examined using Northern blot analysis and in situ hybridization histochemistry. VPF mRNA is expressed in the brain, kidney, liver, lung, and spleen of the healthy adult rat. On Northern blots, the relative abundance of VPF mRNA observed in these tissues was highest in the lung and lowest in the spleen. As determined by in situ hybridization, the patterns of VPF expression are organ specific. Hybridization of an antisense VPF probe was concentrated in the cerebellar granule cell layer of the brain and in the glomeruli and tubules of the kidney. In the liver and lung, intense hybridization was observed homogeneously throughout both tissues, demonstrating that VPF mRNA is present in virtually every hepatocyte and pulmonary alveolar cell. Hybridization to the spleen was weaker and more diffuse. The widespread expression and organ-specific distribution of VPF mRNA in normal rat tissues supports the suggestion of an extensive role for this factor in the physiology of normal vasculature.


2002 ◽  
Vol 283 (1) ◽  
pp. E165-E171 ◽  
Author(s):  
Alison C. Holloway ◽  
David C. Howe ◽  
Gabriel Chan ◽  
Vicki L. Clifton ◽  
Roger Smith ◽  
...  

We hypothesized that urocortin might be produced in the pituitary of the late-gestation ovine fetus in a manner that could contribute to the regulation of ACTH output. We used in situ hybridization and immunohistochemistry to identify urocortin mRNA and protein in late-gestation fetal pituitary tissue. Levels of urocortin mRNA rose during late gestation and were associated temporally with rising concentrations of pituitary proopiomelanocortin (POMC) mRNA. Urocortin was localized both to cells expressing ACTH and to non-ACTH cells by use of dual immunofluorescence histochemistry. Transfection of pituitary cultures with urocortin antisense probe reduced ACTH output, whereas added urocortin stimulated ACTH output from cultured pituitary cells. Cortisol infusion for 96 h in chronically catheterized late-gestation fetal sheep significantly stimulated levels of pituitary urocortin mRNA. We conclude that urocortin is expressed in the ovine fetal pituitary and localizes with, and can stimulate output of, ACTH. Regulation of urocortin by cortisol suggests a mechanism to override negative feedback and sustain feedforward of fetal hypothalamic-pituitary-adrenal function, leading to birth.


1997 ◽  
Vol 228 (2) ◽  
pp. 135-138 ◽  
Author(s):  
Yasuo Hisa ◽  
Shinobu Koike ◽  
Toshiyuki Uno ◽  
Nobuhisa Tadaki ◽  
Hitoshi Bamba ◽  
...  

1977 ◽  
Vol 42 (1) ◽  
pp. 11-20
Author(s):  
Abraham Fisher ◽  
Marta Weinstock ◽  
Sarah Eliash ◽  
Simon Gitter ◽  
Sasson Cohen

Sign in / Sign up

Export Citation Format

Share Document