scholarly journals Influence of different merging angles of pedestrian flows on evacuation time

Fire Research ◽  
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Manuela Marques Lalane Nappi ◽  
Ivana Righetto Moser ◽  
João Carlos Souza

The growing number of fires and other types of catastrophes occurring at large events highlights the need to rethink safety concepts and also to include new ways to optimize buildings and venues where events are held. Although there have been some attempts to model and simulate the movement of pedestrian crowds, little knowledge has been gathered to better understand the impact of the built environment and its geometric characteristics on the crowd dynamics. This paper presents computer simulations about pedestrians’ crowd dynamics that were conducted based on the Social Force Model. The influence of different configurations of pedestrian flows merging during emergency evacuations was investigated. In this study, 12 designs with different merging angles were examined, simulating the evacuation of 400 people in each scenario. The Planung Transport Verkehr (PTV, German for Planning Transport Traffic) Viswalk module of the PTV Vissim software (PTV Group, Karlsruhe, Germany) program was adopted, which allows the employment of the Social Force approach. The results demonstrate that both symmetric and asymmetric scenarios are sensitive to the angles of convergence between pedestrian flows.

2016 ◽  
Vol 10 (7) ◽  
pp. 1
Author(s):  
Mohammed Mahmod Shuaib

Incorporating decision-making capability as an intelligence aspect into crowd dynamics models is crucial factor for reproducing realistic pedestrian flow. Crowd dynamics models are still suffering from poor representation of essential behaviors such as lane changing behavior. In this article, we provide the simulated pedestrians in the social force model more intelligence as an extension to the pedestrian’s investigation capability in bidirectional walkways, to let the model appear more representative of what actually happens in reality. In the proposed model, the lane’s structure is modeled as social network. Thereby, the simulated pedestrians with inconvenient walking can detect the available lanes inside his environment, investigate their attractions, and then make decisions to join the most attractive one. Simulations are performed to validate the work qualitatively by tracing the behavior of the simulated pedestrians and studying the impact of this behavior on lane formation. Finally, a quantitative measurement is used to study the effect of our contribution on the pedestrians’ efficiency of motion.


SIMULATION ◽  
2017 ◽  
Vol 94 (8) ◽  
pp. 723-737 ◽  
Author(s):  
Zhilu Yuan ◽  
Hongfei Jia ◽  
Linfeng Zhang ◽  
Lei Bian

In this paper, we investigate the effect of emergency signs on evacuation dynamics under smoke conditions. We assume that in a smoky hall the visual field of pedestrians is limited to a certain range, and they do not know the exact location of the exit. In this kind of evacuation process, we analyze the influence of emergency signs on movement direction and speed, and the herd behavior of pedestrians. In the analysis, we divide the emergency signs into two types: the wall signs (WS) and the ground signs (GS). Then, we analyze the variation of pedestrian behavior when they encounter the WS, the GS, and the exit in the evacuation process. Combined with the analysis results, we build our improved model based on the social force model. In the simulation, we study the evacuation process in the case of WS and GS. According to the result of the simulation, we consider that the effect of the emergency signs on herd behavior and the desired speed is an important factor to improve evacuation efficiency. We find that, from the perspective of evacuation time, the evacuation in the case of WS is more efficient, but from the perspective of the interaction between pedestrians, the evacuation in the case of GS presents less security risk. Finally, we explore how to design a mixed layout scheme of WS and GS.


Soft Matter ◽  
2021 ◽  
Author(s):  
Chen Cheng ◽  
Jinglai Li ◽  
Zhenwei Yao

Elucidating emergent regularities in intriguing crowd dynamics is a fundamental scientific problem arising in multiple fields. In this work, based on the social force model, we simulate the typical scenario...


2019 ◽  
Vol 11 (24) ◽  
pp. 7188
Author(s):  
Kefan Xie ◽  
Benbu Liang ◽  
Yu Song ◽  
Xueqin Dong

Due to the highly developed rail transit over the past decades, the phenomena of complex individual self-organized behaviors and mass crowd dynamics have become a great concern in the train station. In order to understand passengers’ walking-edge effect and analyze the relationship between the layout and sustainable service abilities of the train station, a heuristics-based social force model is proposed to elaborate the crowd dynamics. Several evacuation scenarios are implemented to describe the walking-edge effect in a train station with the evacuation efficiency, pedestrian flow, and crowd density map. The results show that decentralizing crowd flow can significantly increase the evacuation efficiency in different scenarios. When the exits are far away from the central axis of the railway station, the walking-edge effect has little influence on the evacuation efficiency. Obstacles can guide the movement of passengers by channelizing pedestrian flows. In addition, a wider side exit of the funnel-shaped corridors can promote walking-edge effect and decrease the pressure among a congested crowd. Besides providing a modified social force model with considering walking-edge effect, several suggestions are put forward for managers and architects of the train station in designing sustainable layouts.


Sign in / Sign up

Export Citation Format

Share Document