scholarly journals Risk map for cutaneous leishmaniasis in Ethiopia based on environmental factors as revealed by geographical information systems and statistics

2014 ◽  
Vol 8 (2) ◽  
pp. 377 ◽  
Author(s):  
Ahmed Seid ◽  
Endalamaw Gadisa ◽  
Teshome Tsegaw ◽  
Adugna Abera ◽  
Aklilu Teshome ◽  
...  
2015 ◽  
Vol 144 (5) ◽  
pp. 940-951 ◽  
Author(s):  
M. XU ◽  
C. X. CAO ◽  
D. C. WANG ◽  
B. KAN ◽  
Y. F. XU ◽  
...  

SUMMARYCholera is one of a number of infectious diseases that appears to be influenced by climate, geography and other natural environments. This study analysed the environmental factors of the spatial distribution of cholera in China. It shows that temperature, precipitation, elevation, and distance to the coastline have significant impact on the distribution of cholera. It also reveals the oceanic environmental factors associated with cholera in Zhejiang, which is a coastal province of China, using both remote sensing (RS) and geographical information systems (GIS). The analysis has validated the correlation between indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local number of cholera cases based on 8-year monthly data from 2001 to 2008. The results show the number of cholera cases has been strongly affected by the variables of SST, SSH and OCC. Utilizing this information, a cholera prediction model has been established based on the oceanic and climatic environmental factors. The model indicates that RS and GIS have great potential for designing an early warning system for cholera.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Amare Sewnet Minale ◽  
Kalkidan Alemu

The main objective of this study was to develop a malaria risk map for Bahir Dar City, Amhara, which is situated south of Lake Tana on the Ethiopian plateau. Rainfall, temperature, altitude, slope and land use/land cover (LULC), as well as proximity measures to lake, river and health facilities, were investigated using remote sensing and geographical information systems. The LULC variable was derived from a 2012 SPOT satellite image by supervised classification, while 30-m spatial resolution measurements of altitude and slope came from the Shuttle Radar Topography Mission. Metrological data were collected from the National Meteorological Agency, Bahir Dar branch. These separate datasets, represented as layers in the computer, were combined using weighted, multi-criteria evaluations. The outcome shows that rainfall, temperature, slope, elevation, distance from the lake and distance from the river influenced the malaria hazard the study area by 35%, 15%, 10%, 7%, 5% and 3%, respectively, resulting in a map showing five areas with different levels of malaria hazard: very high (11.2%); high (14.5%); moderate (63.3%); low (6%); and none (5%). The malaria risk map, based on this hazard map plus additional information on proximity to health facilities and current LULC conditions, shows that Bahir Dar City has areas with very high (15%); high (65%); moderate (8%); and low (5%) levels of malaria risk, with only 2% of the land completely riskfree. Such risk maps are essential for planning, implementing, monitoring and evaluating disease control as well as for contemplating prevention and elimination of epidemiological hazards from endemic areas.


Author(s):  
Е.М. Studenikina ◽  
Yu.I. Stepkin ◽  
O.V. Klepikov ◽  
I.V. Kolnet ◽  
L.V. Popova

The paper considers the problematic issues of the geographical information systems (GIS) use in the sociohygienic monitoring (SHM). We analyzed scientific and practical publications on this subject that are freely available on the largest Russian information portal of scientific electronic library eLIBRARY.RU during 2014- 2018, which allowed us to formulate the principles of organization and requirements for effective operation of geographic and information systems in the socio-hygienic monitoring. An analysis of the implementation of these principles at the present stage of development for the socio-hygienic monitoring system is presented, the results of which were used in formulating priority tasks in the area of geographic and information technology implementation into socio-hygienic monitoring and risk-based planning of control and supervisory measures: to determine the necessary level of detail and an information list depicted on electronic maps for the implementation of risk-based control planning; to provide organizational and regulatory and methodological support for the hierarchical principle of GIS within Rospotrebnadzor operating on a single software product of domestic developers for organizations and institutions; to work out the need to combine GIS with similar systems of other departments involved in the data collection of social and hygienic monitoring (Rosstat, Roshydromet, Rosprirodnadzor, Ministry of Health, etc.) to enable automated data export and import; to solve staffing issues to ensure customization and subsequent GIS operation; to provide budget funding for the purchase of licensed software products for GIS in SHM, preferably of Russian developers.


Sign in / Sign up

Export Citation Format

Share Document