scholarly journals Respiratory pathogens in patients with acute exacerbation of non-cystic fibrosis bronchiectasis from a developing country

Author(s):  
Shayan Shahid ◽  
Kausar Jabeen ◽  
Nousheen Iqbal ◽  
Joveria Farooqi ◽  
Muhammad Irfan

Bronchiectasis unrelated to cystic fibrosis (non-CF bronchiectasis) has become a major respiratory disease in developing nations. The dilated mucus filled airways promote bacterial overgrowth followed by chronic infection, bronchial inflammation, lung injury and re-infection Accurate pathogen identification and antimicrobial susceptibility allowing appropriate treatment, in turn, may break this vicious cycle. To study the spectrum and antimicrobial spectrum of pathogen yielded from respiratory specimens in adult patients with acute exacerbation of non-cystic fibrosis (CF) bronchiectasis. This cross-sectional study was performed at the pulmonology clinics of the Aga Khan University, Karachi, Pakistan from 2016-2019. Respiratory specimens were collected from adult patients with acute exacerbation of non-CF bronchiectasis presenting in pulmonology clinics. Microbial cultures were performed using standard methodology. Susceptibility testing was performed and interpreted using Clinical Laboratory Standard Institute criteria.  A total of 345 positive cultures from 160 patients presenting with acute exacerbation were evaluated. The most frequent organisms were Pseudomonas aeruginosa (n=209) followed by Hemophilus influenzae (n=40) and Staphylococcus aureus (n=24). High rates of antimicrobial resistance were found in all these pathogens. Proportion of Pseudomonas aeruginosa strains resistant to ciprofloxacin, imipenem, ceftazidime and piperacillin-tazobactam were 27.1%, 16.8%, 14.8% and 13.1% respectively. 65% of Hemophilus influenzae strains were resistant to cotrimoxazole and ciprofloxacin and 66.7% of Staphylococcus aureus strains were resistant to methicillin. High antimicrobial resistance in non-CF bronchiectasis patients against commonly used antimicrobials is a concern and highlight need for urgent community level interventions to improve clinical outcome in these patients.

2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2011 ◽  
Vol 31 (7) ◽  
pp. 1603-1610 ◽  
Author(s):  
A. Burkett ◽  
K. L. Vandemheen ◽  
T. Giesbrecht-Lewis ◽  
K. Ramotar ◽  
W. Ferris ◽  
...  

2020 ◽  
Author(s):  
Paul Briaud ◽  
Sylvère Bastien ◽  
Laura Camus ◽  
Marie Boyadjian ◽  
Philippe Reix ◽  
...  

AbstractStaphylococcus aureus (SA) is the major colonizer of the lung of cystic fibrosis (CF) patient during childhood and adolescence. As patient aged, the prevalence of SA decreases and Pseudomonas aeruginosa (PA) becomes the major pathogen infecting adult lungs. Nonetheless, SA remains significant and patients harbouring both SA and PA are frequently found in worldwide cohort. Impact of coinfection remains controversial. Furthermore, co-infecting isolates may compete or coexist. The aim of this study was to analyse if co-infection and coexistence of SA and PA could lead to worse clinical outcomes. The clinical and bacteriological data of 212 Lyon CF patients were collected retrospectively, and patients were ranked into three groups, SA only (n=112), PA only (n=48) or SA plus PA (n=52). In addition, SA and PA isolates from co-infecting patients were tested in vitro to define their interaction profile. Sixty five percent (n=34) of SA/PA pairs coexist. Using univariate and multivariate analysis, we confirm that SA patients have a clinical condition less severe than others, and PA induce a poor outcome independently of the presence of SA. FEV1 is lower in patients infected by competition strain pairs than in those infected by coexisting strain pairs compared to SA mono-infection. Coexistence between SA and PA may be an important step in the natural history of lung bacterial colonization within CF patients.


2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Claudia Vicetti Miguel ◽  
Asuncion Mejias ◽  
Amy Leber ◽  
Pablo J. Sanchez

Sign in / Sign up

Export Citation Format

Share Document