scholarly journals Most of Staphylococcus aureus and Pseudomonas aeruginosa co-infecting isolates coexist, a condition that may impact clinical outcomes in Cystic Fibrosis patients

Author(s):  
Paul Briaud ◽  
Sylvère Bastien ◽  
Laura Camus ◽  
Marie Boyadjian ◽  
Philippe Reix ◽  
...  

AbstractStaphylococcus aureus (SA) is the major colonizer of the lung of cystic fibrosis (CF) patient during childhood and adolescence. As patient aged, the prevalence of SA decreases and Pseudomonas aeruginosa (PA) becomes the major pathogen infecting adult lungs. Nonetheless, SA remains significant and patients harbouring both SA and PA are frequently found in worldwide cohort. Impact of coinfection remains controversial. Furthermore, co-infecting isolates may compete or coexist. The aim of this study was to analyse if co-infection and coexistence of SA and PA could lead to worse clinical outcomes. The clinical and bacteriological data of 212 Lyon CF patients were collected retrospectively, and patients were ranked into three groups, SA only (n=112), PA only (n=48) or SA plus PA (n=52). In addition, SA and PA isolates from co-infecting patients were tested in vitro to define their interaction profile. Sixty five percent (n=34) of SA/PA pairs coexist. Using univariate and multivariate analysis, we confirm that SA patients have a clinical condition less severe than others, and PA induce a poor outcome independently of the presence of SA. FEV1 is lower in patients infected by competition strain pairs than in those infected by coexisting strain pairs compared to SA mono-infection. Coexistence between SA and PA may be an important step in the natural history of lung bacterial colonization within CF patients.

2003 ◽  
Vol 24 (7) ◽  
pp. 506-513 ◽  
Author(s):  
Trupti A. Gaonkar ◽  
Lester A. Sampath ◽  
Shanta M. Modak

AbstractObjectives:To evaluate the long-term efficacy of urinary Foley catheters (latex and silicone) impregnated with (1) chlorhexidine and silver sulfadiazine (CXS) and (2) chlorhexidine, silver sulfadiazine, and triclosan (CXST) in inhibiting extra-luminal bacterial adherence and to compare their efficacy with that of silver hydrogel latex (SH) and nitrofurazone-treated silicone (NF) catheters.Design:The antimicrobial spectrum of these catheters was evaluated using a zone of inhibition assay. A novel in vitro urinary tract model was developed to study the potential in vivo efficacy of antimicrobial catheters in preventing extraluminal bacterial colonization. The “meatus” was inoculated daily with Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The “bladder” portion of the model was cultured daily to determine bacterial growth.Results:Both CXS and CXST catheters had a broader antimicrobial spectrum than SH and NF catheters. In the in vitro model, CXST latex and silicone catheters exhibited significantly better efficacy (3 to 25 days) against uropathogens, compared with CXS (1 to 14 days) and control (0 to 5 days) catheters (P = .01). CXST latex catheters exhibited significantly longer protection against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa, compared with SH catheters (P = .01). CXST silicone catheters resisted colonization with Staphylococcus aureus and Staphylococcus epidermidis for a significantly longer period (23 to 24 days) than did NF catheters (9 to 11 days) (P = .01).Conclusion:Catheters impregnated with synergistic combinations of chlorhexidine, silver sulfadiazine, and triclosan exhibited broad-spectrum, long-term resistance against microbial colonization on their outer surfaces (Infect Control Hosp Epidemiol 2003;24:506-513)


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Morgan T. Sutton ◽  
David Fletcher ◽  
Santosh K. Ghosh ◽  
Aaron Weinberg ◽  
Rolf van Heeckeren ◽  
...  

Cystic fibrosis (CF) is a genetic disease in which the battle between pulmonary infection and inflammation becomes the major cause of morbidity and mortality. We have previously shown that human MSCs (hMSCs) decrease inflammation and infection in thein vivomurine model of CF. The studies in this paper focus on the specificity of the hMSC antimicrobial effectiveness usingPseudomonas aeruginosa(gram negative bacteria) andStaphylococcus aureus(gram positive bacteria). Our studies show that hMSCs secrete bioactive molecules which are antimicrobialin vitroagainstPseudomonas aeruginosa, Staphylococcus aureus,andStreptococcus pneumonia, impacting the rate of bacterial growth and transition into colony forming units regardless of the pathogen. Further, we show that the hMSCs have the capacity to enhance antibiotic sensitivity, improving the capacity to kill bacteria. We present data which suggests that the antimicrobial effectiveness is associated with the capacity to slow bacterial growth and the ability of the hMSCs to secrete the antimicrobial peptide LL-37. Lastly, our studies demonstrate that the tissue origin of the hMSCs (bone marrow or adipose tissue derived), the presence of functional cystic fibrosis transmembrane conductance regulator (CFTR: human,Cftr: mouse) activity, and response to effector cytokines can impact both hMSC phenotype and antimicrobial potency and efficacy. These studies demonstrate, the unique capacity of the hMSCs to manage different pathogens and the significance of their phenotype in both the antimicrobial and antibiotic enhancing activities.


2021 ◽  
Author(s):  
Rosana Monteiro ◽  
Andreia Patrícia Magalhães ◽  
Maria Olivia Pereira ◽  
Ana Margarida Sousa

Aim: To investigate the role of pre-established Staphylococcus aureus on Pseudomonas aeruginosa adaptation and antibiotic tolerance. Materials & methods: Bacteria were cultured mimicking the sequential pattern of lung colonization and exposure to ciprofloxacin. Results: In the absence of ciprofloxacin exposure, S. aureus and P. aeruginosa coexisted supported by the physicochemical characteristics of the artificial sputum medium. S. aureus had no role in P. aeruginosa tolerance against ciprofloxacin and did not select P. aeruginosa small-colony variants during antibiotic treatment. rhlR and psqE were downregulated after the contact with S. aureus indicating that P. aeruginosa attenuated its virulence potential. Conclusion: P. aeruginosa and S. aureus can cohabit in cystic fibrosis airway environment for long-term without significant impact on P. aeruginosa adaptation and antibiotic tolerance.


2015 ◽  
Vol 197 (14) ◽  
pp. 2252-2264 ◽  
Author(s):  
Laura M. Filkins ◽  
Jyoti A. Graber ◽  
Daniel G. Olson ◽  
Emily L. Dolben ◽  
Lee R. Lynd ◽  
...  

ABSTRACTThe airways of patients with cystic fibrosis are colonized with diverse bacterial communities that change dynamically during pediatric years and early adulthood.Staphylococcus aureusis the most prevalent pathogen during early childhood, but during late teens and early adulthood, a shift in microbial composition occurs leading toPseudomonas aeruginosacommunity predominance in ∼50% of adults. We developed a robust dual-bacterialin vitrococulture system ofP. aeruginosaandS. aureuson monolayers of human bronchial epithelial cells homozygous for the ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutation to better model the mechanisms of this interaction. We show thatP. aeruginosadrives theS. aureusexpression profile from that of aerobic respiration to fermentation. This shift is dependent on the production of both 2-heptyl-4-hydroxyquinolineN-oxide (HQNO) and siderophores byP. aeruginosa. Furthermore,S. aureus-produced lactate is a carbon source thatP. aeruginosapreferentially consumes over medium-supplied glucose. We find that initiallyS. aureusandP. aeruginosacoexist; however, over extended cocultureP. aeruginosareducesS. aureusviability, also in an HQNO- andP. aeruginosasiderophore-dependent manner. Interestingly,S. aureussmall-colony-variant (SCV) genetic mutant strains, which have defects in their electron transport chain, experience reduced killing byP. aeruginosacompared to their wild-type parent strains; thus, SCVs may provide a mechanism for persistence ofS. aureusin the presence ofP. aeruginosa. We propose that the mechanism ofP. aeruginosa-mediated killing ofS. aureusis multifactorial, requiring HQNO andP. aeruginosasiderophores as well as additional genetic, environmental, and nutritional factors.IMPORTANCEIn individuals with cystic fibrosis,Staphylococcus aureusis the primary respiratory pathogen during childhood. During adulthood,Pseudomonas aeruginosapredominates and correlates with worse patient outcome. The mechanism(s) by whichP. aeruginosaoutcompetes or killsS. aureusis not well understood. We describe anin vitrodual-bacterial species coculture system on cystic fibrosis-derived airway cells, which models interactions relevant to patients with cystic fibrosis. Further, we show that molecules produced byP. aeruginosaadditively induce a transition ofS. aureusmetabolism from aerobic respiration to fermentation and eventually lead to loss ofS. aureusviability. Elucidating the molecular mechanisms ofP. aeruginosacommunity predominance can provide new therapeutic targets and approaches to impede this microbial community transition and subsequent patient worsening.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e89614 ◽  
Author(s):  
Rossella Baldan ◽  
Cristina Cigana ◽  
Francesca Testa ◽  
Irene Bianconi ◽  
Maura De Simone ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Heather G. Ahlgren ◽  
Andrea Benedetti ◽  
Jennifer S. Landry ◽  
Joanie Bernier ◽  
Elias Matouk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document