scholarly journals Repair of double-chambered right ventricle using right ventricular outflow chamber ventriculotomy via left intercostal thoracotomy under beating heart in two dogs

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Keiichi Sato ◽  
Isamu Kanemoto ◽  
Kippei Mihara ◽  
Koudai Kawase ◽  
Takuya Mori ◽  
...  

Double-chambered right ventricle was diagnosed in two dogs, one of them a pup and the other full grown. Both dogs underwent surgery using the novel approach of right ventricular outflow chamber ventriculotomy via left intercostal thoracotomy with moderate hypothermia and moderate pump flow cardiopulmonary bypass under beating heart. No major complication occurred during and after the operation. On continuous wave Doppler echocardiography, the pressure gradient across the stenosis in the right ventricle decreased from 130 mmHg pre-operatively to 40 mmHg post-operatively at 1 year 5 months in the adult dog, and from 209 mmHg pre-operatively to 47 mmHg post-operatively at 1 year in the pup. Both dogs are active without clinical signs.

2021 ◽  
Author(s):  
Qin Wu ◽  
Lei Shi ◽  
Rui Chen ◽  
Quansheng Xing

Abstract Background “Swiss Cheese” ventricular septal defects (VSDs) is a kind of rare and complex congenital heart defects and the surgical management remains controversial and a challenge. We reviewed our preliminary clinical experience on biventricular surgical repair of “Swiss Cheese” VSDs with two-patch and right ventricle apex excluding technique in 10 cases.Methods From May 2014 to December 2019, a series of 10 patients (M/F=3/7) were admitted in our center. 9 cases underwent one-stage surgical repair with two-patch and right ventricle apex excluding technique and 1 case received two-stage surgical repair with the same technique. Surgical repair was done with cardiopulmonary bypass (CPB) in all cases. 2 fresh autologous pericardium patches were used to close defects of the outflow tract area and the apex trabecular area respectively and as a result, the right ventricular apex was excluded from the right ventricular inflow tract.Results All operations were successful. Median CPB time and aortic clamping time were 96 min and 68 min respectively. Delayed chest closure was performed in 2 cases within 48-72 hours postoperatively. The Median time of mechanical ventilation and ICU stay were 131.3 hours and 8 days respectively. Median length of hospital stay after operation was 11 (9-42)days. There was no mortality and major complication except for 2 cases of ventilator associated pneumonia. There was no death and major complication during a median follow-up time of 3.2 years.. The latest echocardiography results showed the left and right heart function was normal in all the cases.Conclusions Biventricular surgical repair of “Swiss Cheese” VSDs with two-patch of fresh autologous pericardium and right ventricle apex excluding technique in infants is safe and feasible with favorable early and mid-term results. Long term results need to be evaluated with more cases.


2020 ◽  
Author(s):  
Qin Wu ◽  
Lei Shi ◽  
Rui Chen ◽  
Quansheng Xing

Abstract Background “Swiss Cheese” ventricular septal defects (VSDs) is a kind of rare and complex congenital heart defects and the surgical management remains controversial and a challenge. We reviewed our preliminary clinical experience on biventricular surgical repair of “Swiss Cheese” VSDs with two-patch and right ventricle apex excluding technique in 10 cases. Methods From May 2014 to December 2019, a series of 10 patients (M/F=3/7) were admitted in our center. 9 cases underwent one-stage surgical repair with two-patch and right ventricle apex excluding technique and 1 case received a second-stage surgical repair with the same technique. Surgical repair was done with cardiopulmonary bypass (CPB) in all cases. 2 fresh autologous pericardium patches were used to close defects of the outflow tract area and the apex trabecular area respectively and as a result, the right ventricular apex was excluded from the right ventricular inflow tract. Results All the operations were successful. Median CPB time and aortic clamping time were 96 min and 68 min respectively. Delayed chest closure were done in 2 cases within 48-72 hours postoperatively. The Median time of mechanical ventilation and ICU stay were 131.3 hours and 8 days respectively. Median length of stay after operation was 11 (9-42)days. There was no mortality and major complication except for 2 cases of ventilator associated pneumonia. There was no death and major complication during the median follow-up time of 3.2 years.. The latest echocardiography results showed the left and right heart function was normal in all the cases. Conclusions Biventricular surgical repair of “Swiss Cheese” VSDs with two-patch of fresh autologous pericardium and right ventricle apex excluding technique in infants is safe and feasible with favorable early and mid-term results. Long term results need to be evaluated with more cases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qin Wu ◽  
Lei Shi ◽  
Rui Chen ◽  
Quansheng Xing

Abstract Background “Swiss Cheese” ventricular septal defects (VSDs) is a kind of rare and complex congenital heart defects and the surgical management remains controversial and a challenge. We reviewed our preliminary clinical experience on biventricular surgical repair of “Swiss Cheese” VSDs with two-patch and right ventricle apex excluding technique in 10 cases. Methods From May 2014 to December 2019, a series of 10 patients (M/F = 3/7) were admitted in our center. Nine cases underwent one-stage surgical repair with two-patch and right ventricle apex excluding technique and 1 case received two-stage surgical repair with the same technique. Surgical repair was done with cardiopulmonary bypass (CPB) in all cases. Two fresh autologous pericardium patches were used to close defects of the outflow tract area and the apex trabecular area respectively and as a result, the right ventricular apex was excluded from the right ventricular inflow tract. Results All operations were successful. Median CPB time and aortic clamping time were 96 min and 68 min respectively. Delayed chest closure was performed in 2 cases within 48–72 h postoperatively. The Median time of mechanical ventilation and ICU stay were 131.3 h and 8 days respectively. Median length of hospital stay after operation was 11 (9–42) days. There was no mortality and major complication except for 2 cases of ventilator associated pneumonia. There was no death and major complication during a median follow-up time of 3.2 years.. The latest echocardiography results showed the left and right heart function was normal in all the cases. Conclusions Biventricular surgical repair of “Swiss Cheese” VSDs with two-patch of fresh autologous pericardium and right ventricle apex excluding technique in infants is safe and feasible with favorable early and mid-term results. Long term results need to be evaluated with more cases.


2012 ◽  
Vol 8 (3) ◽  
pp. 209
Author(s):  
Wouter Jacobs ◽  
Anton Vonk-Noordegraaf ◽  
◽  

Pulmonary arterial hypertension is a progressive disease of the pulmonary vasculature, ultimately leading to right heart failure and death. Current treatment is aimed at targeting three different pathways: the prostacyclin, endothelin and nitric oxide pathways. These therapies improve functional class, increase exercise capacity and improve haemodynamics. In addition, data from a meta-analysis provide compelling evidence of improved survival. Despite these treatments, the outcome is still grim and the cause of death is inevitable – right ventricular failure. One explanation for this paradox of haemodynamic benefit and still worse outcome is that the right ventricle does not benefit from a modest reduction in pulmonary vascular resistance. This article describes the physiological concepts that might underlie this paradox. Based on these concepts, we argue that not only a significant reduction in pulmonary vascular resistance, but also a significant reduction in pulmonary artery pressure is required to save the right ventricle. Haemodynamic data from clinical trials hold the promise that these haemodynamic requirements might be met if upfront combination therapy is used.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Vos ◽  
T Leiner ◽  
A.P.J Van Dijk ◽  
F.J Meijboom ◽  
G.T Sieswerda ◽  
...  

Abstract Introduction Precapillary pulmonary hypertension (pPH) causes right ventricular (RV) pressure overload inducing RV remodeling, often resulting in dysfunction and dilatation, heart failure, and ultimately death. The ability of the right ventricle to adequately adapt to increased pressure loading is key for patients' prognosis. RV ejection fraction (RVEF) by cardiac magnetic resonance (CMR) is related to outcome in pPH patients, but this global measurement is not ideal for detecting early changes in RV function. Strain analysis on CMR using feature tracking (FT) software provides a more detailed assessment, and might therefore detect early changes in RV function. Aim 1) To compare RV strain parameters in pPH patients and healthy controls, and 2) to compare strain parameters in a subgroup of pPH patients with preserved RVEF (pRVEF) and healthy controls. Methods In this prospective study, a CMR was performed in pPH patients and healthy controls. Using FT-software on standard cine images, the following RV strain parameters were analyzed: global, septal, and free wall longitudinal strain (GLS, sept-LS, free wall-LS), time to peak strain (TTP, as a % of the whole cardiac cycle), the fractional area change (FAC), global circumferential strain (GCS), global longitudinal and global circumferential strain rate (GLSR and GCSR, respectively). A pRVEF is defined as a RVEF >50%. To compare RV strain parameters in pPH patients to healthy controls, the Mann-Whitney U test was used. Results 33 pPH-patients (55 [45–63] yrs; 10 (30%) male) and 22 healthy controls (40 [36–48] yrs; 15 (68%) male) were included. All RV strain parameters were significantly reduced in pPH patients compared to healthy controls (see table), except for GCS and GCSR. Most importantly, in pPH patients with pRVEF (n=8) GLS (−26.6% [−22.6 to −27.3] vs. −28.1% [−26.2 to −30.6], p=0.04), sept-LS (−21.2% [−19.8 to −23.2] vs. −26.0% [−24.0 to −27.9], p=0.005), and FAC (39% [35–44] vs. 44% [42–47], p=0.02) were still significantly impaired compared to healthy controls. The RV TTP was significantly increased in pPH patients compared to healthy controls (47% [44–57] vs. 40% [33–43], p≤0.001). Conclusions Several CMR-FT strain parameters of the right ventricle are impaired in pPH patients when compared to healthy controls. Moreover, even in pPH patients with a preserved RVEF multiple RV strain parameters (GLS, sept-LS, and FAC) remained significantly impaired, and TTP significantly prolonged, in comparison to healthy controls. This suggests that RV strain parameters may be used as an early marker of RV dysfunction in pPH patients. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document