scholarly journals Stratigraphy and volcanology of a portion of the Lower Devonian volcanic rocks of southwestern New Brunswick

1988 ◽  
Author(s):  
N A van Wagoner ◽  
V K Fay
1985 ◽  
Vol 22 (6) ◽  
pp. 881-892 ◽  
Author(s):  
John D. Greenough ◽  
S. R. McCutcheon ◽  
V. S. Papezik

Lower to Middle Cambrian volcanic rocks occur within the Avalon Zone of southern New Brunswick at Beaver Harbour and in the Long Reach area. The Beaver Harbour rocks are intensely altered, but the major- and trace-element geochemistry indicates that they could be highly evolved (basaltic andesites) within-plate basalts. The mafic flows from the Long Reach area form two chemically and petrologically distinct groups: (1) basalts with feldspar phenocrysts that represent evolved continental tholeiites with some oceanic characteristics; and (2) a group of aphyric basalts showing extremely primitive continental tholeiite compositions, also with oceanic affinities and resembling some rift-related Jurassic basalts on the eastern seaboard. Felsic pyroclastic rocks in the Long Reach area make the suite bimodal. This distribution of rock types supports conclusions from the mafic rocks that the area experienced tension throughout the Early to Middle Cambrian.


2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


2008 ◽  
Vol 45 (1) ◽  
pp. 15-29 ◽  
Author(s):  
Alan D’hulst ◽  
Georges Beaudoin ◽  
Michel Malo ◽  
Marc Constantin ◽  
Pierre Pilote

The Lower Devonian Sainte-Marguerite volcanic rocks are part of a Silurian–Devonian volcanic sequence deposited between the Taconian and Acadian orogenies in the Gaspé Peninsula, Quebec, Canada. The Sainte-Marguerite unit includes basaltic and dacitic lava flows with calc-alkaline and volcanic-arc affinities. Such affinities are also recorded by the trace-element signature in Lower Silurian and most Lower Devonian volcanic units of the Gaspé Peninsula. However, most of the other Silurian–Devonian volcanic rocks occurring in the Gaspé Peninsula have been previously interpreted to have erupted in an intracontinental setting. A back-arc setting for the Gaspé Peninsula between the Taconian and Acadian orogenies could account for these subduction volcanic-arc signatures, though a metasomatized lithospheric mantle magma source, unrelated to subduction, cannot be excluded. Lower Silurian and Lower Devonian volcanic rocks in the central part of the Gaspé Peninsula show an arc affinity, whereas Upper Silurian and Lower to Middle Devonian volcanic rocks, located in the south and north of the Gaspé Peninsula, respectively, show a within-plate affinity. The Lower Devonian Archibald Settlement and Boutet volcanic rocks of the southern and northern Gaspé Peninsula, respectively, show a trend toward a within-plate affinity. This suggests that within-plate volcanism migrated from south to north through time in an evolving back-arc environment and that the subduction signature of Lower Silurian and Lower Devonian rocks results from a source that melted only under the central part of the Gaspé Peninsula.


Author(s):  
Dennis Sánchez-Mora ◽  
Christopher R.M. McFarlane ◽  
James A Walker ◽  
David R. Lentz

Gold mineralization at Williams Brook in northern New Brunswick is hosted within the Siluro-Devonian, bimodal, volcano-sedimentary rocks of the Tobique-Chaleur Zone (Wapske Formation). Gold mineralization occurs in two styles: 1) as disseminations (refractory gold) in rhyolite, and 2) in cross-cutting quartz veins (free gold). Dating of the felsic volcanic host rocks by in situ LA-ICP-MS zircon U-Pb geochronology returned ages of 422 ± 3, 409 ± 2, 408 ± 3, 405 ± 2, 401 ± 9 Ma. Zr/Y of subvolcanic felsic intrusion (<8 for syn-mineralization and >8 for post-mineralization) suggests evolution from transitional to more alkalic affinities. Two mineralizing events are recognized; the first is a disseminated mineralization style formed at ~422–416 Ma and the second consists of quartz vein-hosted gold emplaced at 410–408 Ma. Felsic rocks from Williams Brook and elsewhere in the Tobique Group (i.e. Wapske, Costigan Mountain, and Benjamin formations), and the Coastal Volcanic Belt have similar Th/Nb ratios of ~0.1 to 1, reflecting similar levels of crustal contamination, and similar Nb and Y content, suggesting A-type affinities. These data indicate a similar environment of formation. Regionally, mafic rocks show similar within-plate continental signatures and an E-MORB mantle source that formed from partial melts of 10–30%. Mafic volcanic rocks from Williams Brook have a more alkaline affinity (based on Ti/V), and derivation from lower percentage partial melting (~5%). The chemical and temporal variations in the Williams Brook rocks suggest that they were erupted in an evolving transpressional tectonic setting during the oblique convergence of Gondwana and Laurentia.


1989 ◽  
Vol 26 (6) ◽  
pp. 1282-1296 ◽  
Author(s):  
J. Dostal ◽  
R. A. Wilson ◽  
J. D. Keppie

Siluro-Devonian volcanic rocks of the northwestern mainland Appalachians are found mainly in the Tobique belt of New Brunswick where they consist predominantly of bimodal mafic–felsic suites erupted in a continental-rift environment. The axis of the Tobique rift trends north-northeast – south-southwest, obliquely to the regional northeast–southwest trend of the Appalachians. These geometric relationships are interpreted as being the result of rifting in a sinistral shear regime produced during emplacement of the Avalon terrene. The basaltic rocks are continental tholeiites and transitional basalts derived from a heterogeneous upper-mantle source that was enriched in incompatible elements relative to the primordial mantle. The mantle source was probably affected by the subduction processes.


2010 ◽  
Vol 46 (0) ◽  
pp. 173-184 ◽  
Author(s):  
Taryn R. Gray ◽  
Jaroslav Dostal ◽  
Malcolm McLeod ◽  
Duncan Keppie ◽  
Yuanyuan Zhang

Sign in / Sign up

Export Citation Format

Share Document