scholarly journals Intercalibrated conodont-radiolarian biostratigraphy and potential datums for the Carnian-Norian boundary within the Upper Triassic Peril Formation, Queen Charlotte Islands, British Columbia

2000 ◽  
Author(s):  
E S Carter ◽  
M J Orchard

1965 ◽  
Vol 2 (5) ◽  
pp. 442-484 ◽  
Author(s):  
Donald Carlisle ◽  
Takeo Susuki

The highly deformed section at Open Bay is one of the few good exposures of a thick sedimentary unit within the prebatholithic rocks along coastal British Columbia. It provides new structural information relating to emplacement of a part of the Coast Range batholith and it contains an important Upper Triassic fauna unusually well represented. Structural and paleontological analyses are mutually supporting and are purposely combined in one paper.Thirteen ammonite genera from 14 localities clearly substantiate McLearn's tentative assignment to the Tropites subbullatus zone (Upper Karnian) and suggest a restriction to the T. dilleri subzone as defined in northern California.Contrary to an earlier view, the beds are lithologically similar across the whole bay except for variations in the intensity of deformation and thermal alteration. Their contact with slightly older relatively undeformed flows is apparently a zone of dislocation. Stratigraphic thicknesses cannot be measured with confidence, and subdivision into "Marble Bay Formation" and "Open Bay Group" cannot be accepted. Open Bay Formation is redefined to include all the folded marble and interbedded pillow lava at Open Bay. Lithologic and biostratigraphic correlation is suggested with the lower middle part of the Quatsino Formation on Iron River, 24 miles to the southwest. Basalt flows and pillowed volcanics west of Open Bay are correlated with the Texada Formation within the Karmutsen Group.The predominant folding is shown to precede, accompany, and follow intrusion of numerous andesitic pods and to precede emplacement of quartz diorite of the batholith. Structural asymmetry is shown to have originated through gentle cross-folding and emplacement of minor intrusives during deformation.



1993 ◽  
Vol 16 (2) ◽  
pp. 119 ◽  
Author(s):  
K. Vermeer ◽  
K. H. Morgan ◽  
G. E. J. Smith


1977 ◽  
Vol 14 (11) ◽  
pp. 2578-2592 ◽  
Author(s):  
J. W. Hillhouse

Paleomagnetic evidence indicates that the extensive early Mesozoic basalt field near McCarthy, south-central Alaska, originated far south of its present position relative to North America. Results obtained from the Middle and (or) Upper Triassic Nikolai Greenstone suggest that those basalts originated within 15° of the paleoequator. This position is at least 27° (3000 km) south of the Upper Triassic latitude predicted for McCarthy on the basis of paleomagnetic data from continental North America. The Nikolai pole, as determined from 50 flows sampled at 5 sites, is at 2.2° N, 146.1° E (α95 = 4.8°). The polarity of the pole is ambiguous, because the corresponding magnetic direction has a low inclination and a westerly declination. Therefore, the Nikolai may have originated near 15° N latitude or, alternatively, as far south as 15° S latitude. In addition to being displaced northward, the Nikolai block has been rotated roughly 90° about the vertical axis. A measure of the reliability of this pole is provided by favorable results from the following tests: (1) Within one stratigraphic section, normal and reversed directions from consecutive flows are antipolar. (2) Consistent directions were obtained from sites 30 km apart. (3) Application of the fold test indicated the magnetization was acquired before the rocks were folded. (4) The magnetizations of several pilot specimens are thermally stable up to 550 °C. The stable component is probably carried by magnetite with lamellar texture, a primary feature commonly acquired by a basalt at high temperature during initial cooling of the magma. Geologic and paleomagnetic evidence indicates that the Nikolai is allochthonous to Alaska and that, together with associated formations in southern Alaska and British Columbia, it is part of a now disrupted equatorial terrane.



Sign in / Sign up

Export Citation Format

Share Document