pillow lava
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yuki Maehara ◽  
◽  
Takeaki Otani ◽  
Tetsuya Yamamoto ◽  
◽  
...  

Lithological facies classification using well logs is essential in the reservoir characterization. The facies are manually classified from characteristic log responses derived, which is challenging and time consuming for geologically complex reservoirs due to high variation of log responses for each facies. To overcome such a challenge, machine learning (ML) is helpful to determine characteristic log responses. In this study, we classified the lithofacies by applying ML to the conventional well logs for the volcanic formation, onshore, northeast Japan. The volcanic formation of the Yurihara oil field is petrologically classified into five lithofacies: mudstone, hyaloclastite, pillow lava, sheet lava, and dolerite, with pillow lava being predominant reservoir. The former four lithofacies are the members of the volcanic system in Miocene, and dolerite randomly intruded later into those. Understanding the distribution of omnidirectional tight dykes at the well location is important for the estimation of potential near-lateral seal distribution compartmentalizing the reservoir. The facies are best classified by core data, which are unfortunately available in a limited number of wells. The conventional logs, with the help of the borehole image log, have been used for the facies classification in most of the wells. However, distinguishing dolerite from sheet lava by manual classification is very ambiguous, as they appear similar in these logs. Therefore, automated clustering of well logs with ML was attempted for the facies classification. All the available log data was audited in the target well prior to applying ML. A total of 10 well logs are available in the reservoir depth interval. To prioritize the logs for the clustering, the information of each log was first analyzed by Principal Component Analysis (PCA). The dimension of variable space was reduced from 10 to 5 using PCA. Final set of 5 variables, gamma-ray, density, formation photoelectric factor, neutron porosity, and laterolog resistivity, were used for the next clustering process. ML was applied to the selected 5 logs for automated clustering. Cross-Entropy Clustering (CEC) was first initialized using k-means++ algorithm. Multiple initialization processes were randomly conducted to find the global minimum of cost function, which automatically derived the optimized number of classes. The resulting classes were further refined by the Gaussian Mixture Model (GMM) and subsequently by the Hidden Markov Model (HMM), which takes the serial dependency of the classes between successive depths into account. Resulting 14 classes were manually merged into 5 classes referring to the lithofacies defined by the borehole image log analysis. The difference of the log responses between basaltic sheet lava and dolerite was too subtle to be captured with confidence by the conventional manual workflow, while the ML technique could successfully capture it. The result was verified by the petrological analyses on sidewall cores (SWCs) and cuttings. In this study, the automated clustering with the combination of several ML algorithms was demonstrated more efficient and reasonable facies classification. The unsupervised learning approach would provide supportive information to reveal the regional facies distribution when it is applied in the other wells, and to comprehend the dynamic behavior of the fluids in the reservoir.


2021 ◽  
pp. M55-2018-85
Author(s):  
J. L. Smellie ◽  
K. D. Collerson

AbstractGaussberg is a nunatak composed of lamproite pillow lava situated on the coast of East Antarctica. It is the most isolated Quaternary volcanic centre in Antarctica but it is important palaeoenvironmentally and petrologically out of all proportion to its small size. The edifice has a likely low, shield-like, morphology c. 1200 m high and possibly up to 10 km wide, which is unusually large for a lamproite construct. Gaussberg was erupted subglacially at 56 ± 5 ka, which places it late in the last glacial, close to the peak of marine isotope stage 3. The coeval ice sheet was c. 1300 m thick, and c. 420 m has been removed from the ice surface since Gaussberg erupted. Lamproite is a rare ultrapotassic mantle-derived magma, and Gaussberg is one of two type examples worldwide. Although traditionally considered as related in some way to the Kerguelen plume, it is more likely that the Gaussberg magma is a product of a separate magmatic event. It is ascribed to the storage and long-term (Gy) isolation of sediment emplaced by subduction in the Transition Zone of the deep mantle, followed by entrainment and subsequent melting in a plume.


2021 ◽  
Vol 110 (2) ◽  
pp. 627-649
Author(s):  
Dennis Quandt ◽  
W. Kurz ◽  
P. Micheuz

AbstractBased on the published data of pillow lava-hosted mineralized veins, this study compares post-magmatic fracturing, fluid flow, and secondary mineralization processes in the Troodos and Izu–Bonin supra-subduction zone (SSZ) and discusses the crucial factors for the development of distinct vein types. Thin section and cathodoluminescence petrography, Raman spectroscopy, fluid inclusion microthermometry, and trace element and isotope (87Sr/86Sr, δ18O, δ13C, Δ47) geochemistry indicate that most veins consist of calcite that precipitated from pristine to slightly modified seawater at temperatures < 50 °C. In response to the mode of fracturing, fluid supply, and mineral growth dynamics, calcites developed distinct blocky (precipitation into fluid-filled fractures), syntaxial (crack and sealing), and antitaxial (diffusion-fed displacive growth) vein microtextures with vein type-specific geochemical signatures. Blocky veins predominate in all study areas, whereas syntaxial veins represent subordinate structures. Antitaxial veins occur in all study areas but are particularly abundant in the Izu–Bonin rear arc where the local geological setting was conducive of antitaxial veining. The temporal framework of major calcite veining coincides with the onset of extensional faulting in the respective areas and points to a tectonic control on veining. Thus, major calcite veining in the Troodos SSZ began contemporaneously with volcanic activity and extensional faulting and completed within ~ 10–20 Myr. This enabled deep seawater downflow and hydrothermal fluid upflow. In the Izu–Bonin forearc, reliable ages of vein calcites point to vein formation > 15 Myr after subduction initiation. Therefore, high-T mineralization (calcite, quartz, analcime) up to 230 °C is restricted to the Troodos SSZ.


2021 ◽  
pp. M55-2018-44
Author(s):  
David H. Elliot ◽  
James D. L. White ◽  
Thomas H. Fleming

AbstractPreserved rocks in the Jurassic Ferrar Large Igneous Province consist mainly of intrusions, and extrusive rocks, the topic of this chapter, comprise the remaining small component. They crop out in a limited number of areas in the Transantarctic Mountains and southeastern Australia. They consist of thick sequences of lavas and sporadic occurrences of volcaniclastic rocks. The latter occur mainly beneath the lavas and represent the initial eruptive activity, but also are present within the lava sequence. The majority are basaltic phreatomagmatic deposits and in at least two locations form immense phreatocauldrons filled with structureless tuff breccias and lapilli tuffs with thicknesses of as much as 400 m. Stratified sequences of tuff breccias, lapilli tuffs and tuffs are up to 200 m thick. Thin tuff beds are sparsely distributed in the lava sequences. Lava successions are mainly 400–500 m thick, and comprise individual lavas ranging from 1 to 230 m thick, although most are in the range of 10–100 m. Well-defined colonnade and entablature are seldom displayed. Lava sequences were confined topographically and locally ponded. Water played a prominent role in eruptive activity, as exhibited by phreatomagmatism, hyaloclastites, pillow lava and quenching of lavas. Vents for lavas have yet to be identified.


Author(s):  
Huzaely Latief Sunan ◽  
Siswandi ◽  
Akhmad Khahlil Gibran ◽  
Maulana Rizki Aditama ◽  
Rahmat Yantono Saragih ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 638
Author(s):  
Janina Wiszniewska ◽  
Anna Grabarczyk ◽  
Ewa Krzemińska ◽  
Talat Ahmad

Field, petrological and mineral chemistry for meta-volcanic rocks from the Aravalli sequence (Aravalli Craton, India) are presented. Field evidence such as volcanic flows and suspect pillow lava structures, dominant Fe-tholeiite lava flows intercalated with quartzites and argillaceous sediments, indicate rift tectonic environment. Primary mineralogy was obliterated during post-magmatic processes such as metamorphism corresponding to the greenschist to lower amphibolite facies conditions. The rock’s mineral composition was overprinted by plagioclase–chlorite–amphibole–epidote assemblage. The relicts of clinopyroxene were observed. The P-T estimation indicates a temperature of 550–600 °C for the pressure ranging from 3.0 to 7.0 kbar for the majority of amphiboles and 8.0–10.7 kbar for the minority. Geochemically, these rocks are komatiitic (picritic) and high-Fe tholeiitic basalts with 45.06−59.2 wt.% SiO2 and MgO content from 5 to 22.4 wt.% and Mg# of 17 to 71. They show large-ion lithophile elements (LILE) and light rare-earth elements (LREE) enrichment. Chondrite normalized rare-earth elements (REE) patterns for the Aravalli lava are moderately enriched with (La/Sm)N = 1.1−3.85, (La/Yb)N from 1.49 (komatiites) to 14.91 (komatiitic basalts). The trace element systematics with the negative Nb, P and Zr anomalies reflect their derivation from enriched sub-continental lithospheric sources, although minor crustal contamination cannot be ruled out. Aravalli rocks are considered to represent the transition from continental rift magmatism to shallow submarine eruption.


2020 ◽  
Author(s):  
Anita Di Chiara ◽  
Lisa Tauxe ◽  
Hubert Staudigel ◽  
Fabio Florindo ◽  
Yongjae Yu ◽  
...  

&lt;p&gt;There has been an increasing effort toward the constraint of the average and long-term variability of the magnetic field strength, fundamental to better understand the characteristics and behaviour of the geomagnetic dipole field. Nonetheless, open questions remain about the value of the average dipole field, the relation between dipole strength and excursion reversal. Indeed, depending on the criteria adopted to analyse the current database, different long-term average values can be found, leading to different answers. The reason for the open debate can explained with the limited amount of data from key time intervals and geographical areas, due to both to complexities behind the method to obtain absolute paleointensities (several methods and experimental designs, selection criteria, high failure rate, etc..) and suitable materials.&lt;/p&gt;&lt;p&gt;Here, we focus on the Cretaceous Normal Superchron, a long period, from approximately 121 to 83 Ma, when the magnetic field was characterised by a stable polarity. Yet, few paleointensity data were available so far. In this study, we present new results from 48 Submarine Basaltic Glass sites from pillow lava margins, sampled on the upper crust sequence of the Costa Rica Ophiolite. Ar/Ar ages along with biostratigraphic age constraints from previous studies indicate ages ranging from from 139 to 94 Ma. After 473 samples were measured using the IZZI-Thellier protocol and analysed using strict selection criteria, 13 sites between 109 and 133 Ma gave reliable and robust results. Our new results from Costa Rica suggest that the strength of the Earth Magnetic field during CNS, 70.2 &amp;#177; 21 ZAm&lt;sup&gt;2&lt;/sup&gt; &amp;#160;are slightly lower than the pre-CNS and also lower than, for instance, at Troodos Ophiolite (81 &amp;#177;&amp;#160;43 ZAm&lt;sup&gt;2&lt;/sup&gt;; Tauxe and Staudigel 2004), consistent with the observations by Tauxe (2006) of an average dipole moment being substantially less than the present day value.&lt;/p&gt;


2019 ◽  
Vol 24 (7) ◽  
pp. 66
Author(s):  
Jabbar M. A . Qaradaghi ◽  
Yousif O . Mohammed ◽  
Salim A. Aziz.

The petrological, morphometric and geochemical analyses of pillow lava from Gole village (Penjween town) Sulaimani city Northeastern Iraq have been undertaken. The Gole Pillow basalt (GPB) extruded, in the form of pillow and sheet flow into the Qulqula radiolarite Formation. The basaltic intrusion restricted to a small area of about 100 m2 within Penjween- Walash zone in the Zagros Suture Zone (ZSZ) of Iraq. The investigated area divided into two sections GPB1 and GPB2. It is envisaged that the studied area distinct two episodes of submarine alkaline eruptions that produced pillowed lavas that differently interacted with seawater to produce different morphologies and geochemistries. The pillows of the GPB1 section well exposed all along the Shalair river near Gole village. Although the pillows of the GPB2 section altered due to low-grade metamorphism and late hydrothermal processes, their igneous textures are still preserved. GPB samples are mostly phyric in nature and show porphyritic or sub-ophitic textures. Petrographically, most of the GPB rock samples appeared as amygdaloidal and vesicular aphanitic basalt. Large phenocryst of hypersthene with schiller structure is present within a matrix of longer quenched plagioclase. Numerous small euhedral grains of opaque minerals like ilmenite and hematite are dispersed in the fine groundmass. Morphological features show that the GPB appeared as spheroidal and lobate to tubular individual pillows. Although some pillow extends 2 meters with a foreset distribution some others show cracked with irregularly jointed surface and larger vesicles partly filled with calcite and quartz. Geochemical investigation of GPB exhibit high TiO2 (3.42 – 3.84 wt.%), Fe2O3 (14.84–19.93 wt.%), and high Zr/Nb and Zr/Y ratios respectively (5.85 – 7.2) (7.10-11.40). The content of alkalies, with the Nb/Y ratio≥1.4, and silica, as well as many trace element discrimination diagrams, classify the GPB as alkaline basalts. The field, stratigraphic relationships, and geochemistry of the GPB and associated clastic and carbonate sediments suggest that the pillow lavas were emplaced in a shallow marine marginal within plate basin. The overall geochemistry of GPB resembles that of alkaline basalts generated in within-plate ocean island settings (OIB-type).   http://dx.doi.org/10.25130/tjps.24.2019.131


2019 ◽  
Vol 60 (6) ◽  
pp. 1135-1162 ◽  
Author(s):  
Fan Yang ◽  
Xiao-Long Huang ◽  
Yi-Gang Xu ◽  
Peng-Li He

Abstract Magmatic processes associated with oceanic crustal accretion at slow-spreading mid-oceanic ridges are less well understood compared with those at fast-spreading ridges. Zoned plagioclase in the basalts might record these magmatic processes as a result of the very slow intra-crystal diffusion of CaAl–NaSi. Plagioclase phenocrysts in plagioclase-phyric basalt from Hole U1433B of International Ocean Discovery Program (IODP) Expedition 349 in the South China Sea show complex zoning patterns (e.g. normal, reverse, oscillatory and patchy). These samples provide a rare opportunity to determine the magma dynamics associated with oceanic crustal accretion at slow-spreading ridges through time. Igneous lithological units in Hole U1433B consist of a series of massive lava flows at the bottom and a thick succession of small pillow lava flows at the top. Most of the plagioclase phenocrysts in the massive lava show core–rim zonation with high-An cores (An ∼85%; in mole fraction; Pl-A) in equilibrium with melts that are more primitive than their host. Some high-An cores of Pl-A phenocrysts contain melt inclusions and are depleted in La, Ce, Y and Ti, but enriched in Sr and Eu; this is interpreted as resulting from dissolution–crystallization processes during reaction of hot melt with pre-existing plagioclase cumulates. In the pillow lavas, most of the plagioclase phenocrysts show normal core–mantle–rim zonation (Pl-B) with An contents decreasing gradually from the core to the mantle to the rim, suggesting extensive magma mixing and differentiation. Reversely zoned plagioclases (Pl-C) are sparsely present throughout the basalts, but mostly occur in the lower part of the drill hole. The cores of euhedral Pl-C phenocrysts are compositionally comparable with the mantles of Pl-B phenocrysts, suggesting that the evolved magma was recharged by a relatively primitive magma. Melt inclusion-bearing Pl-A phenocrysts occur mainly in the massive lava, but rarely in the pillow lava, whereas Pl-B phenocrysts are present dominantly in the pillow lava, which reflects reducing melt–rock interaction and enhanced magma mixing, recharging and differentiation from the bottom to the top of the hole. In addition, the extensive magma mixing and differentiation recorded by Pl-B phenocrysts in the pillow lava require the existence of a melt lens beneath the mid-ocean ridge. Consistently, the plagioclase phenocrysts in the pillow lava mostly lack melt inclusions, corresponding to very weak melt–rock reactions, which indicates that the magma was transported through plagioclase cumulates by channel flow and requires a higher magma supply to the magma conduit. Therefore, the textural and compositional variations of plagioclase phenocrysts in the samples reflect the changes in magma dynamics of the mid-ocean ridge basalt through time with respect to oceanic crustal accretion at slow-spreading ridges. Overall, the oceanic crustal accretion process is sensitive to the magma supply. In the period between two episodes of extension, owing to a low melt supply the primitive melt percolates through and interacts with the mush zone by porous flow, which produces melt inclusion-bearing high-An plagioclase through dissolution–crystallization processes. At the initial stage of a new episode of extension, the melt infiltrates the mush zone and entrains crystal cargoes including melt inclusion-bearing high-An plagioclase. During the major stage of extension, owing to a relatively high melt supply the melt penetrates the mush zone by channel flow and can pool as melt lenses somewhere beneath the dikes; this forms intermediate plagioclases and the reverse zoning of plagioclases by magma mixing, recharging and differentiation in the melt lens. Such magmatic processes might occur repeatedly during the episodic extension that accompanies oceanic crustal accretion at slow-spreading ridges, which enhances the lateral structural heterogeneity of the oceanic crust.


Sign in / Sign up

Export Citation Format

Share Document