What Plasma Ionized Calcium Concentration Increased by Intravenous Injection with 3% Calcium Chloride and 10 % Calcium Gluconate Is Affected on Cardiovascular System?

1994 ◽  
Vol 27 (7) ◽  
pp. 762
Author(s):  
Kyung Kon Kim ◽  
In Su Han ◽  
Jong Hun Jun ◽  
Hee Koo Yoo
2021 ◽  
Vol 5 ◽  
pp. 151
Author(s):  
Gabriela Cormick ◽  
Natalia Matamoros ◽  
Iris B. Romero ◽  
Surya M. Perez ◽  
Cintia White ◽  
...  

Background: Food fortification is an effective strategy that has been recommended for improving population calcium inadequate intakes. Increasing calcium concentration of water has been proposed as a possible strategy to improve calcium intake. The objective of this study was to determine the sensory threshold of different calcium salts added to drinking water using survival analysis. Methods: We performed the triangle test methodology for samples of water with added calcium using three different calcium salts: calcium chloride, calcium gluconate and calcium lactate. For each salt, a panel of 54 consumers tested seven batches of three water samples. Data were adjusted for chance and sensory threshold was estimated using the survival methodology and a discrimination of 50%. Results: The threshold value estimation for calcium gluconate was 587 ± 131 mg/L of water, corresponding to 25% discrimination, for calcium lactate was 676 ± 186 mg/L, corresponding to 50% discrimination, and for calcium chloride was 291 ± 73 mg/L, corresponding to 50% discrimination. Conclusions: These results show that water with calcium added in different salts and up to a concentration of 500 mg of calcium/L of water is feasible. The calcium salt allowing the highest calcium concentration with the lowest perceived changes in taste was calcium gluconate. Future studies need to explore stability and acceptability over longer periods of time.


2022 ◽  
Vol 5 ◽  
pp. 151
Author(s):  
Gabriela Cormick ◽  
Natalia Matamoros ◽  
Iris B. Romero ◽  
Surya M. Perez ◽  
Cintia White ◽  
...  

Background: Food fortification is an effective strategy that has been recommended for improving population calcium inadequate intakes. Increasing calcium concentration of water has been proposed as a possible strategy to improve calcium intake. The objective of this study was to determine the sensory threshold of different calcium salts added to drinking water using survival analysis. Methods: We performed the triangle test methodology for samples of water with added calcium using three different calcium salts: calcium chloride, calcium gluconate and calcium lactate. For each salt, a panel of 54 consumers tested seven batches of three water samples. Data were adjusted for chance and sensory threshold was estimated using the survival methodology and a discrimination of 50%. Results: The threshold value estimation for calcium gluconate was 587 ± 131 mg/L of water, corresponding to 25% discrimination, for calcium lactate was 676 ± 186 mg/L, corresponding to 50% discrimination, and for calcium chloride was 291 ± 73 mg/L, corresponding to 50% discrimination. Conclusions: These results show that water with calcium added in different salts and up to a concentration of 500 mg of calcium/L of water is feasible. The calcium salt allowing the highest calcium concentration with the lowest perceived changes in taste was calcium gluconate. Future studies need to explore stability and acceptability over longer periods of time.


1984 ◽  
Vol 61 (3) ◽  
pp. A422-A422
Author(s):  
C. J. Coté ◽  
A. L. Daniels ◽  
L. J. Drop

1985 ◽  
Vol 63 (12) ◽  
pp. 1577-1580 ◽  
Author(s):  
L. O. Derewlany ◽  
I. C. Radde

Transplacental 45Ca and 32P flux was measured across the in situ perfused guinea-pig placenta under conditions of acute maternal hypocalcaemia and hypercalcaemia. Maternal hypercalcaemia induced acutely by calcium gluconate infusion caused an increase in maternal-to-fetal 45Ca flux which was proportional to the increase in maternal plasma ionized calcium concentration. Acute maternal hypocalcaemia was induced by EGTA infusion and resulted in a decrease in maternal plasma ionized calcium concentration proportional to a corresponding decrease in transplacental 45Ca transfer. A bolus of calcium gluconate caused a transient decrease in 32P flux, whereas EGTA administration was without significant effect on transplacental 32P transfer. Calcium transport across the placenta is not saturated under conditions of maternal normocalcaemia and may be altered according to acute changes in maternal plasma calcium concentration. Thus, control of maternal-to-fetal calcium transfer does not appear to be at the placental level. This suggests that fetal calcium homeostasis may be regulated by the fetus itself.


2010 ◽  
Vol 226 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Rajiv P. Shrestha ◽  
Christopher V. Hollot ◽  
Stuart R. Chipkin ◽  
Claus P. Schmitt ◽  
Yossi Chait

1979 ◽  
Vol 83 (3) ◽  
pp. 521-528 ◽  
Author(s):  
JJ Morrissey ◽  
DV Cohn

The biosynthesis, processing, and secretion of parthormone and the effect of calcium on these processes were measured in dispersed porcine parthyroid cells incubated with [(35)S]methionine. Proparathormone was detected at 10 min, the earliest time measured, and was rapidly and apparently quantitatively converted to parathormone. The half-life of the prohomormone pool was 15 min. Secretion of parathormone was detected by 20 min. In pulse-chase experiments there was a period between 20 and 40 min during which the wave of newly-synthesized parathormone was secreted. After 40 min during little additional radioactive hormone was secreted, but dibutyryl cyclic AMP, an agent that can mobilize stored parathormone, when added to the incubation mixtures enhanced radioactive parathormone secretion but only after 60 min, although it increased net hormone secretion as determined by radioimmunoassay to the same extent at all times studied. When the ionized calcium concentration of the medium was lowered, more radioactive hormone was secreted at all times but the effect was greatest on that hormone that was synthesized less than 60 min previously ; however, net hormone secretion in contrast to radioactive hormone was enhanced equally at all intervals. These data could mean that the refractoriness to secretion of parathormone 40-60 min of age was related to maturation of secretory container preparatory to storage. Low calcium (0.5 mM) stimulated hormone secretion up to fivefold compared to high calcium (3.0 mM) but did not affect synthesis of parathormone or proparathormne or conversion of the latter to hormone. During processing at least 70 percent of the intracellular parathormone was lost, presumably through proteolysis and this degradation was greater at high calcium. These data have been interpreted in light of the concept that two secretable pools of parathormone exist within the parathyroid.


1986 ◽  
Vol 50 (1) ◽  
pp. 30-36 ◽  
Author(s):  
TAKAHARU SAITO ◽  
YUZO HIROTA ◽  
GEN SHIMIZU ◽  
KIYOTAKA KAKU ◽  
KEISHIRO KAWAMURA

Sign in / Sign up

Export Citation Format

Share Document