scholarly journals Projective plane curves whose complements have logarithmic Kodaira dimension one

2001 ◽  
Vol 27 (2) ◽  
pp. 275-310
Author(s):  
Takashi KISHIMOTO
Author(s):  
Grzegorz Malara ◽  
Piotr Pokora ◽  
Halszka Tutaj-Gasińska

AbstractIn this note we study curves (arrangements) in the complex projective plane which can be considered as generalizations of free curves. We construct families of arrangements which are nearly free and possess interesting geometric properties. More generally, we study 3-syzygy curve arrangements and we present examples that admit unexpected curves.


1980 ◽  
Vol 32 (3) ◽  
pp. 628-630 ◽  
Author(s):  
Aiden A. Bruen

In what follows, a theorem on blocking sets is generalized to higher dimensions. The result is then used to study maximal partial spreads of odd-dimensional projective spaces.Notation. The number of elements in a set X is denoted by |X|. Those elements in a set A which are not in the set Bare denoted by A — B. In a projective space Σ = PG(n, q) of dimension n over the field GF(q) of order q, ┌d(Ωd, Λd, etc.) will mean a subspace of dimension d. A hyperplane of Σ is a subspace of dimension n — 1, that is, of co-dimension one.A blocking set in a projective plane π is a subset S of the points of π such that each line of π contains at least one point in S and at least one point not in S. The following result is shown in [1], [2].


2016 ◽  
Vol 227 ◽  
pp. 189-213
Author(s):  
E. ARTAL BARTOLO ◽  
J. I. COGOLLUDO-AGUSTÍN ◽  
A. LIBGOBER

The paper studies a relation between fundamental group of the complement to a plane singular curve and the orbifold pencils containing it. The main tool is the use of Albanese varieties of cyclic covers ramified along such curves. Our results give sufficient conditions for a plane singular curve to belong to an orbifold pencil, that is, a pencil of plane curves with multiple fibers inducing a map onto an orbifold curve whose orbifold fundamental group is nontrivial. We construct an example of a cyclic cover of the projective plane which is an abelian surface isomorphic to the Jacobian of a curve of genus 2 illustrating the extent to which these conditions are necessary.


2005 ◽  
Vol 92 (1) ◽  
pp. 99-138 ◽  
Author(s):  
J. FERNÁNDEZ DE BOBADILLA ◽  
I. LUENGO-VELASCO ◽  
A. MELLE-HERNÁNDEZ ◽  
A. NÉMETHI

In 2002, L. Nicolaescu and the fourth author formulated a very general conjecture which relates the geometric genus of a Gorenstein surface singularity with rational homology sphere link with the Seiberg--Witten invariant (or one of its candidates) of the link. Recently, the last three authors found some counterexamples using superisolated singularities. The theory of superisolated hypersurface singularities with rational homology sphere link is equivalent with the theory of rational cuspidal projective plane curves. In the case when the corresponding curve has only one singular point one knows no counterexample. In fact, in this case the above Seiberg--Witten conjecture led us to a very interesting and deep set of `compatibility properties' of these curves (generalising the Seiberg--Witten invariant conjecture, but sitting deeply in algebraic geometry) which seems to generalise some other famous conjectures and properties as well (for example, the Noether--Nagata or the log Bogomolov--Miyaoka--Yau inequalities). Namely, we provide a set of `compatibility conditions' which conjecturally is satisfied by a local embedded topological type of a germ of plane curve singularity and an integer $d$ if and only if the germ can be realized as the unique singular point of a rational unicuspidal projective plane curve of degree $d$. The conjectured compatibility properties have a weaker version too, valid for any rational cuspidal curve with more than one singular point. The goal of the present article is to formulate these conjectured properties, and to verify them in all the situations when the logarithmic Kodaira dimension of the complement of the corresponding plane curves is strictly less than 2.


2020 ◽  
Vol 208 (1) ◽  
pp. 31-48
Author(s):  
Thomas Wennink

AbstractThe trigonal curves of genus 5 can be represented by projective plane quintics that have one singularity of delta invariant one. Combining this with a partial sieve method for plane curves we count the number of such curves over any finite field. The main application is that this gives the motivic Euler characteristic of the moduli space of trigonal curves of genus 5.


1996 ◽  
Vol 48 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Sandeep H. Holay

AbstractWe consider the surface obtained from the projective plane by blowing up the points of intersection of two plane curves meeting transversely. We find minimal generating sets of the defining ideals of these surfaces embedded in projective space by the sections of a very ample divisor class. All of the results are proven over an algebraically closed field of arbitrary characteristic.


1966 ◽  
Vol 27 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Hisasi Morikawa

It is known classically that abelian varieties of dimension one over the field of complex numbers may be expressed by non-singular Hesse’s canonical cubic plane curves, The purpose of the present paper is to generalize this idea to higher dimensional case.


2014 ◽  
Vol 25 (11) ◽  
pp. 1450103 ◽  
Author(s):  
Jinwon Choi ◽  
Kiryong Chung

We find sharp bounds on h0(F) for one-dimensional semistable sheaves F on a projective variety X. When X is the projective plane ℙ2, we study the stratification of the moduli space by the spectrum of sheaves. We show that the deepest stratum is isomorphic to a closed subset of a relative Hilbert scheme. This provides an example of a family of semistable sheaves having the biggest dimensional global section space.


Sign in / Sign up

Export Citation Format

Share Document