scholarly journals Home range sizes of Cape Mountain Zebras Equus Zebra Zebra in the Mountain Zebra National Park

Koedoe ◽  
1982 ◽  
Vol 25 (1) ◽  
Author(s):  
B. L Penzhorn

The mean home range size of Cape mountain zebra breeding herds was 9,4 km2 (range 3,1 @ 16,0 km2). In two herds which split up, the home ranges of the resultant herds included the original home ranges, but were larger.

1996 ◽  
Vol 23 (6) ◽  
pp. 711 ◽  
Author(s):  
G Saunders ◽  
B Kay

The movements of a subalpine population of feral pigs were examined at Kosciusko National Park in southeastern New South Wales. Sufficient data were collected to estimate the home-range area of 20 pigs on the basis of 782 telemetry and trap locations. Mean (+/- s.d.) home-range size (minimum convex polygon method) for males (35.0 t 22.2 km*2) was significantly greater than that for females (1 1.1 +/- 5.2 km*2). Use of capture-recapture distances to estimate home-range size was considered inappropriate. A test for nomadism suggests that, although home ranges of pigs in this environment were larger than those reported for other pigs in Australia, the pigs were essentially sedentary. Management implications for this population are discussed.


2020 ◽  
Author(s):  
Anagaw Atickem ◽  
Matthias Klapproth ◽  
Martha Fischer ◽  
Dietmar Zinner ◽  
Leif Egil Loe

Abstract Background: Human settlement and agricultural activities restrict increasingly the range of large mammals in many cases contributing to declining numbers of ungulates. Here, we studied home range size and habitat selection of female mountain nyalas in the northern end of the Bale Mountains National Park (BMNP) (31 km2) surrounded by human settlement. We collected data on space use of seven adult female mountain nyalas equipped with Global Positioning System (GPS) collars. Home range size was estimated using fixed kernel density and habitat selection was determined by resource selection functions.Results: We found that female mountain nyalas have much smaller (5.7 km2) home ranges than the 19 km2 home range size predicted for a 170 kg, group-living species living in mixed habitats. Home ranges were 30% larger in night time than daytime. We suggest that the night time extension beyond the park boundaries were caused by both push and pull effects. The presumably high livestock and other ungulates grazing pressure within the protected area may cause forage-driven excursions out of the park, in particular during agricultural crop seasons. In addition, mountain nyalas are probably attracted by humans as shields against hyena predation. Resource selection index indicates bush land and forest habitat are the most preferred habitat types while agriculture and human settlements are least preferred habitats.Conclusions: Given that mountain nyalas are found in high density (24 individuals/km2) and the size of the northern part of the Bale Mountain National Park, which is currently under protection by the park authorities for the mountain nyala conservation, is too small for the predicted home range size of large ungulates, we suggest protecting additional area may be needed for the long-term conservation of the endangered mountain nyala.


2011 ◽  
Vol 33 (2) ◽  
pp. 128 ◽  
Author(s):  
Jenny Molyneux ◽  
David A. Taggart ◽  
Anthony Corrigan ◽  
Sean Frey

In 2008, after 9 years of presumed local extinction, brush-tailed rock-wallabies (Petrogale penicillata) were reintroduced at Moora Moora Creek in the Grampians National Park, western Victoria. Since little is known about this species in Victoria, the reintroduction presented an important opportunity to gain information on the species’ ecology. Radio-tracking was undertaken and home range determined for three individuals released 11 months before this study and a further five individuals that were released at the commencement of the study in October 2009. Home-range size showed little variation amongst individuals, with a mean overall home range of 26 ha (±1.69, s.e.) and a mean core home range of 2.5 ha (±0.24, s.e.). Newly reintroduced individuals showed higher levels of association with wallabies from the same release and greater site fidelity when known conspecifics were close. Within 5 months of release, newly reintroduced animals showed home ranges similar in both size and distribution to those of animals released 11 months prior.


1999 ◽  
Vol 59 (1) ◽  
pp. 125-130 ◽  
Author(s):  
C. F. D. ROCHA

The home range of the Tropidurid lizard Liolaemus lutzae, an endemic species of the costal sand dune habitats of Rio de Janeiro State, was studied in the beach habitat of Barra de Maricá restinga, Maricá County. Home ranges were studied using a mark-recapture technique in a delimited area at the beach habitat. I considered for estimates and analysis the home ranges of those lizards with a minimum of four positions. The size of L. lutzae home ranges varied according to the segment of the population. The mean home range size of adult males (x = 59.8 ± 33.7 m²) was significantly larger than that of adult females (x = 22.3 ± 16.1 m²). Juvenile mean home range size was significantly smaller than that of adult males, but did not differ from that of adult females (t = 1.058; p = 0.149). The overlap between male home ranges was usually low (3.6%), being in general only peripheral. Conversely, there was a considerable overlap between home ranges of adult females with those of adult males, the home range areas of two or three females being enclosed in the home range of one adult male. The small overlap between home ranges of adult males suggested mutual exclusion. The observed between-sex differences in the size of L. lutzae home range may be explained by the sexual dimorphism in body size in this species, and by the need of adult males to establish larger areas so as to include many females in their areas, during the reproductive season. The differences in home range along ontogeny probably result from differences in body size of the different segments of the population, due to trophic differences (carnivory and herbivory levels), and the dispersal of young after birth. Because L. lutzae is omnivorous, but primarily herbivorous when adult, and due to its sit-and-wait foraging behavior (mainly on arthropods), it does not need to move around over large areas to find food, which in turn reduces the area necessary for it to live.


Oryx ◽  
2014 ◽  
Vol 48 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Achara Simcharoen ◽  
Tommaso Savini ◽  
George A. Gale ◽  
Saksit Simcharoen ◽  
Somphot Duangchantrasiri ◽  
...  

AbstractTigers Panthera tigris are highly threatened and continue to decline across their entire range. Actions to restore and conserve populations need to be based on science but, in South-east Asia, information on ecology and behaviour of tigers is lacking. This study reports the relationship between the home range size of female tigers and prey abundance, using data from radio-collared tigers in Huai Kha Khaeng Wildlife Sanctuary, Thailand, and published data from other studies. A total of 11 tigers, four males and seven females, were fitted with global positioning system collars, to estimate home ranges using 95 and 100% minimum convex polygons (MCP). Prey abundance was estimated by faecal accumulation rates. The mean home range size of male tigers was 267 and 294 km2 based on 95 and 100% MCPs, respectively; the mean female home range size was 70 and 84 km2, respectively. Territories of male and female tigers had little overlap, which indicated both sexes were territorial. Mean densities of the prey species sambar Rusa unicolor, barking deer Muntiacus muntjac and large bovids were 7.5, 3.5 and 3.0 km−2, respectively. When female home range size and prey abundance were compared at six locations in Thailand, and at other sites in India, Nepal, Bangladesh and Russia, a significant negative correlation was found between prey abundance and home range size. Monitoring this relationship can provide managers with metrics for setting conservation goals.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-7
Author(s):  
Marek Kouba ◽  
Václav Tomášek

Abstract Animal home ranges are typically characterized by their size, shape and a given time interval and can be affected by many different biotic and abiotic factors. Understanding of animal movements and assessing the size of their home ranges are essential topics in ecology and necessary for effective species protection, especially concerning birds of prey. Using radio-telemetry (VHF; 2.1 g tail-mounted tags) we studied the movements of two Tengmalm’s owl (Aegolius funereus) males during the breeding season 2008 in a mountain area of Central Europe (the Czech Republic, the Jizera Mountains: 50˚ 50’ N, 15˚ 16’ E). We determined their average nocturnal hunting and diurnal roosting home range sizes. The mean hunting home range size calculated according to the 90% fixed kernel density estimator was 251.1 ± 43.2 ha (± SD). The mean roosting home range size calculated according to the 100% minimum convex polygon method was 57.9 ± 15.8 ha (± SD). The sizes of hunting home ranges during breeding in this study coincide with those previously reported by other studies focusing on Tengmalm’s owl males. However, we found the roosting home ranges were smaller in size compared to those previously reported. This result was most probably connected with different habitat structure in our study area, which was severally damaged by air-pollution in the past, thus probably offering fewer suitable hiding-places, for instance from predators. We found the roosting locations were concentrated in the oldest and densest Norway spruce forest patches. We emphasize that these parts of forest stands require the highest possible protection in our study area.


2021 ◽  
Vol 75 (8) ◽  
Author(s):  
Tomasz Borowik ◽  
Rafał Kowalczyk ◽  
Weronika Maślanko ◽  
Norbert Duda ◽  
Mirosław Ratkiewicz

Abstract The heterogeneity of resource availability shapes animal movements at different spatio-temporal scales. Given that movements at various scales are assumed to be linked, the space use of temperate ungulates within seasonal ranges (winter, summer) should be related to their movement patterns at the annual scale. In this study, we aimed to evaluate the level of stationarity of moose (Alces alces) within their seasonal ranges and to link annual movement patterns to within-season space use. We analysed the ranging behaviour of 32 moose fitted with GPS collars from two study areas in Eastern Poland, where at the annual scale a fraction of individuals migrate between summer and winter ranges (partial migration). Our results revealed that moose stationarity within seasonal home ranges expressed remarkable variation. The probability of moose stationarity within seasonal ranges was significantly higher (by 23%), and the mean home range size tended to be lower (9.7 km2) among individuals that seasonally migrated than among non-migratory moose (14.3 km2). In addition, we found that (i) in summer, moose were significantly more stationary (by 19%) and exhibited a smaller mean home range size than in winter (9.0 and 15.9 km2, respectively) and (ii) the mean seasonal home range size of males (19.6 km2) was remarkably greater than that of females (9.6 km2). Given the significant link between annual and seasonal scales of animal movements, any environmental change (e.g. climate warming) affecting an animal’s annual movement strategy could alter within-season animal space use and presumably individual fitness. Significance statement To maximize their fitness, animals adjust their movements to deal with variations in resource distribution in the landscape. The scale of spatio-temporal variation causes different types of migratory behaviours, ranging from year-round stationarity to migration, when individuals establish spatially separated seasonal ranges. Studies on ungulates suggest that the stability and the size of seasonal home ranges can be linked to annual movement behaviour. Using the locations of GPS-tracked moose, we demonstrate in this study that migratory individuals were more prone to establishing stable seasonal home ranges (especially in summer) than moose that occupied the same area throughout the year. Moreover, stable seasonal home ranges were remarkably smaller in summer than in winter, which may suggest a season-specific spatial distribution and a renewability of moose forage. Our results show a clear link between different temporal scales of animal movements.


2006 ◽  
Vol 54 (4) ◽  
pp. 225 ◽  
Author(s):  
Jennifer K. Martin

Detailed knowledge of how individuals use space when active and while sheltering is crucial to understanding the habitat requirements of a species. I present the first home-range estimates for bobucks, Trichosurus cunninghami, that are based on both nocturnal and diurnal radio-tracking fixes. I tracked 37 individuals (14 adult females, 14 adult males, three subadult females and six subadult males) between mid-1999 and late 2003 in a forest patch in the Strathbogie Ranges, south-eastern Australia. I collected a total of 9562 diurnal fixes (mean 309 fixes per adult) and 5211 nocturnal fixes (mean 169 fixes per adult). All individuals used multiple den-trees; adults used a mean of 7.2 den-trees per individual. Adult bobucks of both sexes had a mean home-range size of 6.0 ha. There were no significant differences in the mean number of den-trees used or in the mean home-range size of adult males and females. Subadults used significantly fewer den-trees and had significantly smaller home ranges than adults. This study demonstrates the importance of large and long-term datasets in accurately determining the habitat requirements of a population.


Primates ◽  
2021 ◽  
Author(s):  
Laura Martínez-Íñigo ◽  
Pauline Baas ◽  
Harmonie Klein ◽  
Simone Pika ◽  
Tobias Deschner

AbstractRanging behavior has been studied extensively in eastern (Pan troglodytes schweinfurthii) and western (P. t. verus) chimpanzees, but relatively little is known regarding home ranges of the other two subspecies (P. t. ellioti; P. t. troglodytes). In this study, we determined the home range size and space use of a habituated community (Rekambo) of central chimpanzees living in a habitat mosaic in Loango National Park, Gabon. Data on travel routes were collected during follows between January 2017 and April 2019 (N = 670,616 relocations, collected over 640 days and 5690 h of observation). We used three methods for calculating home range size (minimum convex polygon, kernel density estimation, and biased random bridges). We compare our estimates to those obtained from prior genetic and camera trap studies of the Rekambo community and contrast them with estimates from other chimpanzee communities of the four chimpanzee subspecies. Depending on the methodology used, the home range size of the Rekambo community ranged between 27.64 and 59.03 km2. The location of the center of the home range remained relatively stable over the last decade, while the overall size decreased. The Rekambo home range is, therefore, one of the largest documented so far for chimpanzees outside savannah-woodland habitats. We discuss several explanations, including the presence of savannah, interspecies competition, and intercommunity interactions.


Sign in / Sign up

Export Citation Format

Share Document