scholarly journals The impact of acid mine drainage in South Africa

2011 ◽  
Vol 107 (5/6) ◽  
Author(s):  
Terence S. McCarthy
2012 ◽  
Vol 36 (2) ◽  
pp. 671-679 ◽  
Author(s):  
Igor Rodrigues de Assis ◽  
Luiz Eduardo Dias ◽  
Emerson Silva Ribeiro Jr ◽  
Walter Antônio Pereira Abrahão ◽  
Jaime Wilson Vargas de Mello ◽  
...  

Acid mine drainage (AMD) is an environmental concern due to the risk of element mobilization, including toxic elements, and inclusion in the food chain. In this study, three cover layers were tested to minimize As, Fe and S mobilization from a substrate from former gold mining, containing pyrite and arsenopyrite. For this purpose, different layers (capillary break, sealant and cover layer) above the substrate and the induction of a geochemical barrier (GB) were used to provide suitable conditions for adsorption and co-precipitation of the mobilized As. Thirteen treatments were established to evaluate the leaching of As, Fe and S from a substrate in lysimeters. The pH, As, Fe, S, Na, and K concentrations and total volume of the leachates were determined. Mineralogical analyses were realized in the substrate at the end of the experimental period. Lowest amounts of As, Fe and S (average values of 5.47, 48.59 and 132.89 g/lysimeter) were leached in the treatments that received Na and K to induce GB formation. Mineralogical analyses indicated jarosite formation in the control treatment and in treatments that received Na and K salts. However, the jarosite amounts in these treatments were higher than in the control, suggesting that these salts accelerated the GB formation. High amounts of As, Fe and S (average values of 11.7, 103.94 and 201.13 g/lysimeter) were observed in the leachate from treatments without capillary break layer. The formation of geochemical barrier and the use of different layers over the sulfide substrate proved to be efficient techniques to decrease As, Fe and S mobilization and mitigate the impact of acid mine drainage.


Water Policy ◽  
2017 ◽  
Vol 20 (1) ◽  
pp. 77-89
Author(s):  
Charles Mpofu ◽  
Thabiso John Morodi ◽  
Johan Petrus Hattingh

Abstract The water resources in South Africa are threatened by current and past mining practices such as abandoned and closed mines. While mining is considered valuable for its contribution to this country's gross domestic product, its polluting effects on water and land resources have been criticised as unsustainable. Acid mine drainage (AMD) is one specific public health and ecological issue that has stirred debates in political and social circles in this country. This paper examines the scalar politics and other related dimensions of water and AMD governance, thereby revealing evidence of deep-rooted challenges regarding the governance of water and mineral resources. The specific focus is on the socio-political context of labour laws and Black Economic Empowerment and the decision-making processes adopted by government. Thus, this paper has implications for the improvement of environmental governance and decision-making strategies and the adoption of a national strategy for adequately addressing AMD and related policy issues.


2021 ◽  
Author(s):  
Ilona Sekudewicz ◽  
Michał Gąsiorowski ◽  
Šárka Matoušková ◽  
Jan Rohovec ◽  
Karolina Kaucha

2021 ◽  
Vol 35 (1) ◽  
pp. 41-50
Author(s):  
Svetlana Bratkova

The formation of acid mine drainage (AMD) is a serious environmental problem in areas with mining and processing industries worldwide. Their generation is associated with chemical and biological processes of oxidation of sulfide minerals, mainly pyrite. Sources of AMD can be deposits of sulfide minerals and coal with a high content of pyrite sulfur, mining waste and some tailings. The impact of AMD on surface and groundwater in mining areas continues for decades after the cessation of extraction. An example of the negative impact of generated acid mine drainage on the state of surface waters is in the region of Madzharovo. Years after the cessation of mining, the waters at the discharge points "Momina Skala", "Harman Kaya" and "Pandak Dere" are characterized by low pH values and high concentrations of iron, copper, zinc, cadmium, lead and manganese.


Sign in / Sign up

Export Citation Format

Share Document