element mobilization
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 118 (41) ◽  
pp. e2100839118
Author(s):  
Niraj K. Nirala ◽  
Qi Li ◽  
Prachi N. Ghule ◽  
Hsi-Ju Chen ◽  
Rui Li ◽  
...  

Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.


Author(s):  
R. Bolhar ◽  
A. Hofmann ◽  
C.M. Allen ◽  
R. Maas

Abstract Archaean zircons from the Kaapvaal Craton, South Africa, were analyzed by Laser Ablation (LA)-ICP-MS to obtain a coupled record of U-Th-Pb isotope ratios and selected trace elements with the aim to develop insights into physico-chemical conditions during igneous zircon crystallization and subsequent compositional alteration. Four rock samples previously dated by SIMS U-Pb using zircon were selected: 3.56 Ga Ngwane Gneiss, 3.55 Ga Theespruit felsic metavolcanic, 3.50 Ga Steynsdorp Gneiss and 2.98 Ga Nhlangano Gneiss. LA-ICP-MS U-Pb zircon ages agree with published SIMS U-Pb ages within analytical uncertainty. Assessment of the magmatic crystallization histories was based on near-concordant grains, and discordant grains were used to examine post-igneous element mobilization and alteration. Time-resolved laser drilling experiments allowed distinction of concordant and discordant zircon domains, but also revealed systematic changes in REE + Ti geochemistry, U + Th content, discordance and metamictization. Th/U and Zr/Hf, coupled with REE patterns, effectively distinguish compositional zircon types that reflect variable degrees of igneous differentiation and melt compositions. Eu/Eu* values indicate significant feldspar fractionation in some magmas. Averaged crystallization temperatures of magmatic zircons, as derived from the Ti-in-zircon thermometer, define a narrow range of 650 to 750°C for (near-)concordant grains, consistent with general constraints on temperatures at zircon saturation for felsic magmas, and testifying to a closed-system behavior of Ti (and other trace elements). Systematic deviations from primary igneous trace element signatures are strongly correlated with radiation damage. Specifically, Th/U and, to some extent, Zr/Hf decrease, and Ti increases with increasing U (+Th) content and isotopic disturbance (discordance).


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1589
Author(s):  
Felix Ortmeyer ◽  
Stefan Wohnlich ◽  
Andre Banning

Nitrate (NO3−)-polluted groundwater treatment by enhanced denitrification is becoming increasingly important due to rising NO3− concentrations and decreasing degradation capacities in aquifers. Besides evaluating the efficacy of substrates added to trigger denitrification, secondary reactions must be closely monitored. Biodenitrification by applied organic carbon (Corg) can lead to considerable changes in redox potential (Eh) and pH, two decisive parameters for trace element mobility. In this study, two geologically and hydrogeochemically different groundwater catchments important for drinking water production were investigated and compared. Sediments were analyzed for trace elements as well as sulfur (S) and carbon (C) contents. Ongoing hydrogeochemical reactions were evaluated with depth-specific isotope characterization, and the potential for trace element mobilization by Corg addition was determined in column experiments. Results for enhanced denitrification showed up to 3.8 times lower reaction rates with respect to comparable studies, probably due to incomplete formation of the necessary denitrifying bacteria. Concentrations of trace elements such as nickel (Ni) must also be considered when evaluating enhanced denitrification, as these can negatively affect microorganisms. Added ethanol led to Ni concentrations dropping from 0.013 mg/L to below the detection limit. Thus, Corg addition may not only induce denitrification, but also lead to the immobilization of previously released trace elements.


2020 ◽  
Vol 117 (50) ◽  
pp. 31648-31659
Author(s):  
Jon R. Hawkings ◽  
Mark L. Skidmore ◽  
Jemma L. Wadham ◽  
John C. Priscu ◽  
Peter L. Morton ◽  
...  

Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.


2020 ◽  
Vol 541 ◽  
pp. 116262
Author(s):  
Detao He ◽  
Yongsheng Liu ◽  
Frédéric Moynier ◽  
Stephen F. Foley ◽  
Chunfei Chen

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Satoru Kobayashi

AbstractGenetic damage in the germline induced by P-element mobilization causes a syndrome known as P-M hybrid dysgenesis (HD), which manifests as elevated mutation frequency and loss of germline cells. In this study, we found that Myc plays an important role in eliminating germline cells in the context of HD. P-element mobilization resulted in downregulation of Myc expression in the germline. Myc knockdown caused germline elimination; conversely, Myc overexpression rescued the germline loss caused by P-element mobilization. Moreover, restoration of fertility by Myc resulted in the production of gametes with elevated mutation frequency and reduced ability to undergo development. Our results demonstrate that Myc downregulation mediates elimination of germline cells with accumulated genetic damage, and that failure to remove these cells results in increased production of aberrant gametes. Therefore, we propose that elimination of germline cells mediated by Myc downregulation is a quality control mechanism that maintains the genomic integrity of the germline.


Geosphere ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1958-1972
Author(s):  
Gavin Piccione ◽  
E. Troy Rasbury ◽  
Brent A. Elliott ◽  
J. Richard Kyle ◽  
Steven J. Jaret ◽  
...  

Abstract Numerous studies have documented rare-earth element (REE) mobility in hydrothermal and metamorphic fluids, but the processes and timing of REE mobility are rarely well constrained. The Round Top laccolith in the Trans-Pecos magmatic province of west Texas, a REE ore prospect, has crosscutting fractures filled with fluorite and calcite along with a variety of unusual minerals. Most notably among these is an yttrium and heavy rare-earth element (YHREE) carbonate mineral, which is hypothesized to be lokkaite based on elemental analyses. While the Round Top laccolith is dated to 36.2 ± 0.6 Ma based on K/Ar in biotite, U-Pb fluorite and nacrite ages presented here clearly show the mineralization in these veins is younger than 6.2 ± 0.4 Ma (the age of the oldest fluorite). This discrepancy in dates suggests that fluids interacted with the laccolith to mobilize REE more than 30 m.y. after igneous emplacement. The timing of observed REE mobilization overlaps with Rio Grande rift extension, and we suggest that F-bearing fluids associated with extension may be responsible for initial mobilization. A later generation of fluids was able to dissolve fluorite, and we hypothesize this later history involved sulfuric acid. Synchrotron spectroscopy and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) U-Pb dating of minerals that record these fluids offer tremendous potential for a more fundamental understanding of processes that are important not only for REE but other ore deposits as well.


Sign in / Sign up

Export Citation Format

Share Document