scholarly journals The fundamental importance of differential equations with three singularities in Mathematical Statistics

1985 ◽  
Vol 4 (1) ◽  
pp. 18-24
Author(s):  
H. S. Steyn

It is well-known that the solution of a second order linear differential equation with at most five singularities plays a fundamental role in Mathematical Physics. In this paper it is shown that this statement also applies to Mathematical Statistics but with the difference that an equation with three singularities will suffice. Two wide classes of probability distributions are defined as solutions of such a differential equation, one for continuous distributions and one for discrete distributions. These two classes contain as members all the distributions which are normally considered as of importance in Mathematical Statistics. In the continuous case the probability functions are solutions of the relevant second order equation, while in the discrete case the probability generating functions are solutions there-of. By defining appropriate multidimentional extensions corresponding differential equations are obtained for continuous and discrete multivariate distributions.

1876 ◽  
Vol 24 (164-170) ◽  
pp. 269-271 ◽  

Every linear differential equation of the second order may, as is known, be reduced to the form d / dx (1/P du / dx ) = u , . . . . . . (1) where P is any given function of x . On account of the great importance of this equation in mathematical physics (vibrations of a non-uniform stretched cord, of a hanging chain, water in a canal of non-uniform breadth and depth, of air in a pipe of non-uniform sectional area, conduction of heat along a bar of non-uniform fiction or non-uniform conductivity, Laplace’s differential equation of the tides, &c. &c.), I have long endeavoured to obtain a means of faciliiting its practical solution.


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


1951 ◽  
Vol 3 ◽  
pp. 335-338 ◽  
Author(s):  
E. A. Coddington ◽  
N. Levinson

Let p(x) > 0, q(x) be two real-valued continuous functions on . Suppose that the differential equation with the real parameter λ


2017 ◽  
Vol 67 (3) ◽  
Author(s):  
Simona Fišnarová ◽  
Robert Mařík

AbstractIn this paper we derive oscillation criteria for the second order half-linear neutral differential equationwhere Φ(


1955 ◽  
Vol 51 (4) ◽  
pp. 604-613
Author(s):  
Chike Obi

1·1. A general problem in the theory of non-linear differential equations of the second order is: Given a non-linear differential equation of the second order uniformly almost periodic (u.a.p.) in the independent variable and with certain disposable constants (parameters), to find: (i) the non-trivial relations between these parameters such that the given differential equation has a non-periodic u.a.p. solution; (ii) the number of periodic and non-periodic u.a.p. solutions which correspond to each such relation; and (iii) explicit analytical expressions for the u.a.p. solutions when they exist.


2018 ◽  
Vol 12 (2) ◽  
pp. 481-492
Author(s):  
M. Mursaleen ◽  
Syed Rizvi

In this paper we are concerned with the existence of solutions for certain classes of second order differential equations. First we deal with an infinite system of second order linear differential equations, which is reduced to an ordinary differential equation posed in the space of convergent sequences. Next we investigate the problem of existence for a second order differential equation posed on an arbitrary Banach space. The used approach is based on the measures of noncompactness concept, the use of Darbo's fixed point theorem and Kamke comparison functions.


2020 ◽  
Vol 8 (3) ◽  
pp. 61-68
Author(s):  
Avyt Asanov ◽  
Kanykei Asanova

Exact solutions for linear and nonlinear differential equations play an important rolein theoretical and practical research. In particular many works have been devoted tofinding a formula for solving second order linear differential equations with variablecoefficients. In this paper we obtained the formula for the common solution of thelinear differential equation of the second order with the variable coefficients in themore common case. We also obtained the new formula for the solution of the Cauchyproblem for the linear differential equation of the second order with the variablecoefficients.Examples illustrating the application of the obtained formula for solvingsecond-order linear differential equations are given.Key words: The linear differential equation, the second order, the variablecoefficients,the new formula for the common solution, Cauchy problem, examples.


Author(s):  
Zh. A. Sartabanov ◽  
A. Kh. Zhumagaziyev ◽  
A. A. Duyussova

In the article, adapted to the school course, the second order linear differential equations with constant coefficients and trigonometric free terms are investigated. The basic elementary methodological approaches to solving the equation are given. The solutions of the second order linear differential equation with constant coefficients and trigonometric free terms are investigated, which is a model of many phenomena. In addition, the applied values of the equation and its solutions were noted. The results obtained are presented in the form of theorems. The main novelty of the study is that these results are proved and generalized by elementary methods. These conclusions are proved in the framework of the methods of high school mathematics. This theory, known in general mathematics, is fully adapted to the implementation in secondary school mathematics and developed with the help of new elementary techniques that are understandable to the student. The main purpose of the research is to develop methods for solving a non-uniform linear differential equation of the second order with a constant coefficient at a level that a schoolboy can master. The result will be the creation of a special course program on the basics of ordinary differential equations in secondary schools of the natural-mathematical direction, the preparation of appropriate content material and providing them with a simple teaching method.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
A. Javadian ◽  
E. Sorouri ◽  
G. H. Kim ◽  
M. Eshaghi Gordji

We prove the generalized Hyers-Ulam stability of the 2nd-order linear differential equation of the form , with condition that there exists a nonzero in such that and is an open interval. As a consequence of our main theorem, we prove the generalized Hyers-Ulam stability of several important well-known differential equations.


Author(s):  
Paul W. Spikes

SynopsisSufficient conditions are given to insure that all solutions of a perturbed non-linear second-order differential equation have certain integrability properties. In addition, some continuability and boundedness results are given for solutions of this equation.


Sign in / Sign up

Export Citation Format

Share Document