scholarly journals Influence of different abutment diameter of implants on the peri-implant stress in the crestal bone: A Three-dimensional finite element analysis - In vitro study

2016 ◽  
Vol 27 (1) ◽  
pp. 78 ◽  
Author(s):  
Anupama Aradya ◽  
UKrishna Kumar ◽  
Ramesh Chowdhary
2020 ◽  
Vol 8 (03) ◽  
pp. 084-091
Author(s):  
Himani Jain ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Deepti Jain

Abstract Introduction This study was undertaken to assess the influence of different superstructure materials, when subjected to occlusal loading, on the pattern of stress distribution in tooth-supported, implant-supported, and tooth implant-supported fixed partial prostheses, using the finite element analysis with a comparative viewpoint. Materials and Methods The geometric models of implant and mandibular bone were generated. Three models were created in accordance with the need of the study. The first model was given a tooth-supported fixed partial prosthesis. The second model was given tooth implant-supported fixed partial prosthesis, and the third model was given implant-supported fixed partial prosthesis. Forces of 100 N and 50 N were applied axially and buccolingually, respectively. Results The present study compared the stresses arising in the natural tooth, implant, and the whole prostheses under simulated axial and buccolingual loading of three types of fixed partial dentures, namely, tooth-supported, tooth implant-supported, and implant-supported fixed partial dental prostheses using three different types of materials. Conclusion The pattern of stress distribution did not appear to be significantly affected by the type of prosthesis materials in all models. The maximum stress concentrations were found in the alveolar bone around the neck of the teeth and implants.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document