scholarly journals Inclusion of the periodontal ligament in studies on the biomechanical behavior of fiber post-retained restorations: An in vitro study and three-dimensional finite element analysis

Author(s):  
Carmen González-Lluch ◽  
Pablo-Jesús Rodríguez-Cervantes ◽  
Leopoldo Forner ◽  
Amaya Barjau
2019 ◽  
pp. 0000-0000 ◽  
Author(s):  
Karina Albino Lencioni ◽  
Pedro Yoshito Noritomi ◽  
Ana Paula Macedo ◽  
Ricardo Faria Ribeiro ◽  
Rossana Pereira Almeida

This study analyzed the biomechanical behavior of rigid and non-rigid tooth-implant supported fixed partial dentures. Different implants were used in order to observe the load distribution over teeth, implants, and adjacent bone using three-dimensional finite element analysis. A simulation of tooth loss of the first and second right molars was created with an implant placed in the second right molar and a prepared tooth with simulated periodontal ligament (PDL) in the second right premolar. Configurations of two types of implants and their respective abutments, i.e., external hexagon (EX) and Morse taper (MT), were transformed into a 3D format. Metal-ceramic fixed partial dentures were constructed with rigid and non-rigid connections. Mesh generation and data processing were performed on the 3D FEA results. Static loading of 50 N (premolar) and 100 N (implant) were applied. When an EX implant was used, with a rigid or non-rigid connection, there was intrusion of the tooth in the distal direction with flexion of the periodontal ligament. Tooth intrusion did not occur when the MT implant was used independent of a rigid or non-rigid connection. The rigid or non-rigid connection resulted in a higher incidence of compressive forces at the cortical bone and stress in the abutment/pontic area, regardless of whether EX or MT implants were used. MT implants have a superior biomechanical performance in tooth-implant supported fixed partial dentures. This prevents the intrusion of the tooth independent of the connection. Both types of implants that were studied caused a greater tendency of compressive forces at the crestal area.


2020 ◽  
Vol 8 (03) ◽  
pp. 084-091
Author(s):  
Himani Jain ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Deepti Jain

Abstract Introduction This study was undertaken to assess the influence of different superstructure materials, when subjected to occlusal loading, on the pattern of stress distribution in tooth-supported, implant-supported, and tooth implant-supported fixed partial prostheses, using the finite element analysis with a comparative viewpoint. Materials and Methods The geometric models of implant and mandibular bone were generated. Three models were created in accordance with the need of the study. The first model was given a tooth-supported fixed partial prosthesis. The second model was given tooth implant-supported fixed partial prosthesis, and the third model was given implant-supported fixed partial prosthesis. Forces of 100 N and 50 N were applied axially and buccolingually, respectively. Results The present study compared the stresses arising in the natural tooth, implant, and the whole prostheses under simulated axial and buccolingual loading of three types of fixed partial dentures, namely, tooth-supported, tooth implant-supported, and implant-supported fixed partial dental prostheses using three different types of materials. Conclusion The pattern of stress distribution did not appear to be significantly affected by the type of prosthesis materials in all models. The maximum stress concentrations were found in the alveolar bone around the neck of the teeth and implants.


Sign in / Sign up

Export Citation Format

Share Document