Cervico-ocular reflex in cervical vertigo

2011 ◽  
Vol 17 (2) ◽  
pp. 51 ◽  
Author(s):  
MK Taneja
2019 ◽  
Vol 23 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Ryan N. Moran ◽  
Tracey Covassin ◽  
Jessica Wallace

OBJECTIVEMigraine history has recently been identified as a risk factor for concussion and recovery. The authors performed a cross-sectional study examining baseline outcome measures on newly developed and implemented concussion assessment tools in pediatrics. The purpose of this study was to examine the effects of premorbid, diagnosed migraine headaches as a risk factor on vestibular and oculomotor baseline assessment in pediatric athletes.METHODSPediatric athletes between the ages of 8 and 14 years with a diagnosed history of migraine headache (n = 28) and matched controls without a history of diagnosed migraine headache (n = 28) were administered a baseline concussion assessment battery, consisting of the Vestibular/Ocular Motor Screening (VOMS), near point of convergence (NPC), and the King-Devick (K-D) tests. Between-groups comparisons were performed for vestibular symptoms and provocation scores on the VOMS (smooth pursuit, saccades, convergence, vestibular/ocular reflex, visual motion sensitivity), NPC (average distance), and K-D (time).RESULTSIndividuals diagnosed with migraine headaches reported greater VOMS smooth pursuit scores (p = 0.02), convergence scores (p = 0.04), vestibular ocular reflex scores (p value range 0.002–0.04), and visual motion sensitivity scores (p = 0.009). Differences were also observed on K-D oculomotor performance with worse times in those diagnosed with migraine headache (p = 0.02). No differences were reported on NPC distance (p = 0.06) or headache symptom reporting (p = 0.07) prior to the VOMS assessment.CONCLUSIONSPediatric athletes diagnosed with migraine headaches reported higher baseline symptom provocation scores on the VOMS. Athletes with migraine headaches also performed worse on the K-D test, further illustrating the influence of premorbid migraine headaches as a risk factor for elevated concussion assessment outcomes at baseline. Special consideration may be warranted for post-concussion assessment in athletes with migraine headaches.


2013 ◽  
Vol 72 (3) ◽  
pp. 156-162
Author(s):  
Yumiko O. Kato ◽  
Koshi Mikami ◽  
Yasuhiro Miyamoto ◽  
Shoji Watanabe ◽  
Izumi Koizuka

2021 ◽  
pp. 1-11
Author(s):  
Mario Faralli ◽  
Michele Ori ◽  
Giampietro Ricci ◽  
Mauro Roscini ◽  
Roberto Panichi ◽  
...  

BACKGROUND: Self-motion misperception has been observed in vestibular patients during asymmetric body oscillations. This misperception is correlated with the patient’s vestibular discomfort. OBJECTIVE: To investigate whether or not self-motion misperception persists in post-ictal patients with Ménière’s disease (MD). METHODS: Twenty-eight MD patients were investigated while in the post-ictal interval. Self-motion perception was studied by examining the displacement of a memorized visual target after sequences of opposite directed fast-slow asymmetric whole body rotations in the dark. The difference in target representation was analyzed and correlated with the Dizziness Handicap Inventory (DHI) score. The vestibulo-ocular reflex (VOR) and clinical tests for ocular reflex were also evaluated. RESULTS: All MD patients showed a noticeable difference in target representation after asymmetric rotation depending on the direction of the fast/slow rotations. This side difference suggests disruption of motion perception. The DHI score was correlated with the amount of motion misperception. In contrast, VOR and clinical trials were altered in only half of these patients. CONCLUSIONS: Asymmetric rotation reveals disruption of self-motion perception in MD patients during the post-ictal interval, even in the absence of ocular reflex impairment. Motion misperception may cause persistent vestibular discomfort in these patients.


2020 ◽  
Vol 21 ◽  
pp. 100488
Author(s):  
Adam Pantanowitz ◽  
Kimoon Kim ◽  
Chelsey Chewins ◽  
Isabel N.K. Tollman ◽  
David M. Rubin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shotaro Harada ◽  
Takao Imai ◽  
Yasumitsu Takimoto ◽  
Yumi Ohta ◽  
Takashi Sato ◽  
...  

AbstractIn the interaural direction, translational linear acceleration is loaded during lateral translational movement and gravitational acceleration is loaded during lateral tilting movement. These two types of acceleration induce eye movements via two kinds of otolith-ocular reflexes to compensate for movement and maintain clear vision: horizontal eye movement during translational movement, and torsional eye movement (torsion) during tilting movement. Although the two types of acceleration cannot be discriminated, the two otolith-ocular reflexes can distinguish them effectively. In the current study, we tested whether lateral-eyed mice exhibit both of these otolith-ocular reflexes. In addition, we propose a new index for assessing the otolith-ocular reflex in mice. During lateral translational movement, mice did not show appropriate horizontal eye movement, but exhibited unnecessary vertical torsion-like eye movement that compensated for the angle between the body axis and gravito-inertial acceleration (GIA; i.e., the sum of gravity and inertial force due to movement) by interpreting GIA as gravity. Using the new index (amplitude of vertical component of eye movement)/(angle between body axis and GIA), the mouse otolith-ocular reflex can be assessed without determining whether the otolith-ocular reflex is induced during translational movement or during tilting movement.


Sign in / Sign up

Export Citation Format

Share Document