scholarly journals Development of a new method for assessing otolith function in mice using three-dimensional binocular analysis of the otolith-ocular reflex

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shotaro Harada ◽  
Takao Imai ◽  
Yasumitsu Takimoto ◽  
Yumi Ohta ◽  
Takashi Sato ◽  
...  

AbstractIn the interaural direction, translational linear acceleration is loaded during lateral translational movement and gravitational acceleration is loaded during lateral tilting movement. These two types of acceleration induce eye movements via two kinds of otolith-ocular reflexes to compensate for movement and maintain clear vision: horizontal eye movement during translational movement, and torsional eye movement (torsion) during tilting movement. Although the two types of acceleration cannot be discriminated, the two otolith-ocular reflexes can distinguish them effectively. In the current study, we tested whether lateral-eyed mice exhibit both of these otolith-ocular reflexes. In addition, we propose a new index for assessing the otolith-ocular reflex in mice. During lateral translational movement, mice did not show appropriate horizontal eye movement, but exhibited unnecessary vertical torsion-like eye movement that compensated for the angle between the body axis and gravito-inertial acceleration (GIA; i.e., the sum of gravity and inertial force due to movement) by interpreting GIA as gravity. Using the new index (amplitude of vertical component of eye movement)/(angle between body axis and GIA), the mouse otolith-ocular reflex can be assessed without determining whether the otolith-ocular reflex is induced during translational movement or during tilting movement.

2021 ◽  
Author(s):  
Shotaro Harada ◽  
Takao Imai ◽  
Yasumitsu Takimoto ◽  
Yumi Ohta ◽  
Takashi Sato ◽  
...  

Abstract In the interaural direction, translational linear acceleration is loaded during lateral translational movement and gravitational acceleration is loaded during lateral tilting movement. These two types of acceleration induce eye movements via two kinds of otolith-ocular reflexes to compensate for movement and maintain clear vision: horizontal eye movement during translational movement, and ocular counter roll during tilting movement. Although the two types of acceleration cannot be discriminated, the two otolith-ocular reflexes can distinguish them effectively. In the current study, we tested whether lateral-eyed mice exhibit both of these otolith-ocular reflexes. In addition, we propose a new index for assessing the otolith-ocular reflex in mice. During lateral translational movement, mice did not show appropriate horizontal eye movement, but exhibited unnecessary vertical ocular counter roll-like eye movement that compensated for the angle between the body axis and gravito-inertial acceleration (GIA; i.e., the sum of gravity and inertial force due to movement) by misunderstanding GIA as gravity. Using the new index (amplitude of vertical component of eye movement) / (angle between body axis and GIA), the mouse otolith-ocular reflex can be assessed without determining whether the otolith-ocular reflex is induced during translational movement or during tilting movement.


2004 ◽  
Vol 14 (4) ◽  
pp. 321-333
Author(s):  
Frédéric Sarès ◽  
Christophe Bourdin ◽  
Jean-Michel Prieur ◽  
Jean-Louis Vercher ◽  
Jean-Pierre Menu ◽  
...  

The way in which the head is controlled in roll was investigated by dissociating the body axis and the gravito-inertial force orientation. Seated subjects (N = 8) were requested to align their head with their trunk, 30° to the left, 30° to the right or with the gravito-inertial vector, before, during (Per Rotation), after off-center rotation and on a tilted chair without rotation (Tilted). The gravito-inertial vector angle during rotation and the chair tilt angle were identical (17°). The subjects were either in total darkness or facing a visual frame that was fixed to the trunk. Both final error and within-subject variability of head positioning increased when the body axis and the gravito-inertial vector were dissociated (Per Rotation and Tilted). However, the behavior was different depending on whether the subjects were in the Tilted or Per Rotation conditions. The presentation of the visual frame reduced the within-subject variability and modified the perception of the gravito-inertial vector's orientation on the tilted chair. As head positioning with respect to the body and sensing of the gravito-inertial vector are modified when body axis and gravito-inertial vector orientation are dissociated, the observed decrease in performance while executing motor tasks in a gravito-inertial field may be at least in part attributed to the inaccurate sensing of head position.


2009 ◽  
Vol 641 ◽  
pp. 441-461 ◽  
Author(s):  
HONGMEI YAN ◽  
YUMING LIU ◽  
JAKUB KOMINIARCZUK ◽  
DICK K. P. YUE

The dynamics of the air cavity created by vertical water entry of a three-dimensional body is investigated theoretically, computationally and experimentally. The study is focused in the range of relatively low Froude numbers, Fr ≡ V(gD)−1/2 ≤ O(10) (where V is the dropping velocity of the body, D its characteristic dimension and g the gravitational acceleration), when the inertia and gravity effects are comparable. To understand the physical processes involved in the evolution of cavity, we conduct laboratory experiments of water entry of freely dropping spheres. A matched asymptotic theory for the description of the cavity dynamics is developed based on the slender-body theory in the context of potential flow. Direct comparisons with experimental data show that the asymptotic theory properly captures the key physical effects involved in the development of the cavity, and in particular gives a reasonable prediction of the maximum size of the cavity and the time of cavity closure. Due to the inherent assumption in the asymptotic theory, it is incapable of accurately predicting the flow details near the free surface and the body, where nonlinear free surface and body boundary effects are important. To complement the asymptotic theory, a fully nonlinear numerical study using an axisymmetric boundary integral equation is performed. The numerically obtained dependencies of the cavity height and closure time on Froude number and body geometry are in excellent agreement with available experiments.


Geophysics ◽  
1985 ◽  
Vol 50 (7) ◽  
pp. 1144-1162 ◽  
Author(s):  
William A. SanFilipo ◽  
Perry A. Eaton ◽  
Gerald W. Hohmann

The transient electromagnetic (TEM) response of a three‐dimensional (3-D) prism in a conductive half‐space is not always approximated well by three‐dimensional free‐space or two‐dimensional (2-D) conductive host models. The 3-D conductive host model is characterized by a complex interaction between inductive and current channeling effects. We numerically computed 3-D TEM responses using a time‐domain integral‐equation solution. Models consist of a vertical or horizontal prismatic conductor in conductive half‐space, energized by a rapid linear turn‐off of current in a rectangular loop. Current channeling, characterized by currents that flow through the body, is produced by charges which accumulate on the surface of the 3-D body and results in response profiles that can be much different in amplitude and shape than the corresponding response for the same body in free space, even after subtracting the half‐space response. Responses characterized by inductive (vortex) currents circulating within the body are similar to the response of the body in free space after subtracting the half‐space contribution. The difference between responses dominated by either channeled or vortex currents is subtle for vertical bodies but dramatic for horizontal bodies. Changing the conductivity of the host effects the relative importance of current channeling, the velocity and rate of decay of the primary (half‐space) electric field, and the build‐up of eddy currents in the body. As host conductivity increases, current channeling enhances the amplitude of the response of a vertical body and broadens the anomaly along the profile. For a horizontal body the shape of the anomaly is distorted from the free‐space anomaly by current channeling and is highly sensitive to the resistivity of the host. In the latter case, a 2-D response is similar to the 3-D response only if current channeling effects dominate over inductive effects. For models that are not greatly elongated, TEM responses are more sensitive to the conductivity of the body than galvanic (dc) responses, which saturate at a moderate resistivity contrast. Multicomponent data are preferable to vertical component data because in some cases the presence and location of the target are more easily resolved in the horizontal response and because the horizontal half‐space response decays more quickly than does the corresponding vertical response.


1966 ◽  
Vol 44 (1) ◽  
pp. 17-31
Author(s):  
R. S. PAYNE ◽  
K. D. ROEDER ◽  
J. WALLMAN

1. Noctuid moths of several species were mounted at the tip of a tower of fine tubing in acoustic ‘free space’. Recordings were made of the intensity of a brief pulse of ultrasound necessary to produce a constant tympanic nerve response for any angle of sound presentation relative to the moth's body axis. Such plots of intensity versus angle were made with the wings held in several postures approximating those assumed in normal flight. 2. The data indicate that sound intensity reaching the tympanic organ can vary by as much as 40 db. depending upon: (a) the position of a sound source relative to the moth's body axis, and (b) the position of its wings. 3. With wings above the horizontal plane each ear reports sounds c. 20-40 db. louder on the ipsilateral side than on the contralateral side. With wings below the horizontal, the lateral asymmetries are replaced by a dorsoventral asymmetry in which each ear reports sounds coming from below the body c. 10-25 db. louder than sounds coming from above. 4. Directional sensitivity plots at 60 kcyc./sec. are more complex than plots at 30 kcyc./sec.--as expected. 5. A theory is presented to explain how a moth could determine the direction of a sound source in three-dimensional space by comparing the intensity reports of both tympanic organs during a complete wing cycle.


2004 ◽  
Vol 92 (4) ◽  
pp. 2333-2345 ◽  
Author(s):  
Robert J. Peterka ◽  
Claire C. Gianna-Poulin ◽  
Lionel H. Zupan ◽  
Daniel M. Merfeld

A caloric stimulus evokes primarily a horizontal vestibulo-ocular reflex (VOR) when subjects are in a supine or prone orientation with the horizontal semicircular canal plane oriented vertically. In both monkeys and humans, the magnitude of VOR eye movements is greater in the supine than in the prone orientation, indicating that some factor or factors, other than the conventionally accepted convective stimulation of the horizontal canals, contributes to the generation of the VOR. We used long-duration caloric irrigations and mathematical models of canal-otolith interactions to investigate factors contributing to the prone/supine asymmetry. Binaural caloric irrigations were applied for 7.5 or 9.5 min with subjects in a null orientation with horizontal canals in the earth-horizontal plane (control trial), or with the subject's pitch orientation periodically changing between null, supine, and prone positions with each orientation held for 30 s (caloric step trial). The control trial responses identified a small response attributable to a direct thermal effect on vestibular afferent activity that accounted for only 15% of the observed prone/supine asymmetry. We show that the gravito-inertial force resolution hypothesis for sensory integration of canal and otolith information predicts that the central processing of canal and otolith information produces an internal estimate of motion that includes both a rotational motion component and a linear acceleration component. These components evoke a horizontal angular VOR and linear VOR, which combine additively in the supine orientation, but subtract in the prone orientation, thus accounting for the majority of the observed prone/supine asymmetry.


1987 ◽  
Vol 3 (3) ◽  
pp. 242-263 ◽  
Author(s):  
Richard N. Hinrichs

Ten male recreational runners were filmed using three-dimensional cinematography while running on a treadmill at 3.8 m/s, 4.5 m/s, and 5.4 m/s. A 14-segment mathematical model was used to examine the contributions of the arms to the total-body angular momentum about three orthogonal axes passing through the body center of mass. The results showed that while the body possessed varying amounts of angular momentum about all three coordinate axes, the arms made a meaningful contribution to only the vertical component (Hz). The arms were found to generate an alternating positive and negative Hzpattern during the running cycle. This tended to cancel out an opposite Hzpattern of the legs. The trunk was found to be an active participant in this balance of angular momentum, the upper trunk rotating back and forth with the arms and, to a lesser extent, the lower trunk with the legs. The result was a relatively small total-body Hzthroughout the running cycle. The inverse relationship between upper- and lower-body angular momentum suggests that the arms and upper trunk provide the majority of the angular impulse about the z axis needed to put the legs through their alternating strides in running.


1976 ◽  
Vol 66 (2) ◽  
pp. 405-423
Author(s):  
N. A. Levy ◽  
A. K. Mal

abstract Near-field ground displacements are calculated from an earthquake source in a homogeneous, elastic half-space. An analytical formulation of the problem is presented that requires no physical approximations except at the source. A model of the source is constructed by retaining the essential kinematic character of the faulting process. A computer program is developed to calculate ground motion from an assumed model of the 1966 Parkfield, California earthquake. Favorable agreement is obtained between the theoretically computed ground displacements and those derived from the recorded accelerations. The relative contributions of the body waves and surface waves to the displacement field are examined. The results indicate that a significant portion of near-field motion may consist of surface waves, especially in the vertical component of the ground motion.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document