scholarly journals Amino acid mutation in Plasmodium vivax dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes in Hormozgan Province, southern Iran

2019 ◽  
Vol 56 (2) ◽  
pp. 170 ◽  
Author(s):  
Gholamreza Hatam ◽  
Somayeh Maghsoodloorad ◽  
Nahid Hosseinzadeh ◽  
Ali Haghighi ◽  
Rahmat Solgi ◽  
...  
1998 ◽  
Vol 178 (3) ◽  
pp. 700-706 ◽  
Author(s):  
Andreas Pikis ◽  
Jacob A. Donkersloot ◽  
William J. Rodriguez ◽  
Jerry M. Keith

2021 ◽  
Vol 14 (1) ◽  
pp. 445-453
Author(s):  
Semuel Sandy ◽  
Irawaty Wike

Purpose: In this review, the compound 6-prenylapigenin was identified as a potential wild type Plasmodium vivax dihydrofolate reductase (PDB ID: 2BL9) protein receptor inhibitor through a series of computer-assisted drug design processes, to highlight important interactions between ligand and 2BL9 receptor protein and determine drug properties. proposed as a 2BL9 inhibiting agent. Methods: The in silico study used secondary data including Plasmodium vivax protein receptor (PDB ID: 2BL9), 6-Prenylapigenin compound (PubChem ID: 10382485), and native ligand Pyrimethamine (PubChem ID: 4993) as a comparison. In silico analysis using software, including AutoDock v 4.2.3, admetSAR v 2.0, Lipinski Role Of Five, PROCHECK SAVES v 6.0, LigPlus + v 2.2 and the Discovery Studio 2016. Results: The study results showed that the free energy of the Gibbs bonding compound 6-Prenylapigenin is -7.61 kcal/mol with an inhibition constant is 2.65 nM. Types of hydrogen bonding to the amino acid residues Asp53 (A) and Ile173 (A). Hydrophobic extraction of the amino acid residues were Tyr125 (A); Met54 (A); Leu128 (A); Phe57 (A); Ala15 (A); Cys14 (A); Leu39 (A); Leu45 (A); and Tyr179 (A). In silico studies, this compound also has good toxicity and bioavailability properties. Conclusion: 6-Prenylapigenin compound has an inhibitor activity at the active site of the 2BL9 protein receptor by forming hydrogen bonding and hydrophobic interactions. This compound has good toxicity and bio availability so that it may be developed as a dihydrofolate reductase enzyme inhibitor compound.


1984 ◽  
Vol 259 (19) ◽  
pp. 12291-12298 ◽  
Author(s):  
D P Baccanari ◽  
R L Tansik ◽  
S J Paterson ◽  
D Stone

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Lilia González-Cerón ◽  
José Cebrián-Carmona ◽  
Concepción M. Mesa-Valle ◽  
Federico García-Maroto ◽  
Frida Santillán-Valenzuela ◽  
...  

Plasmodium vivax Cysteine-Rich Protective Antigen (CyRPA) is a merozoite protein participating in the parasite invasion of human reticulocytes. During natural P. vivax infection, antibody responses against PvCyRPA have been detected. In children, low anti-CyRPA antibody titers correlated with clinical protection, which suggests this protein as a potential vaccine candidate. This work analyzed the genetic and amino acid diversity of pvcyrpa in Mexican and global parasites. Consensus coding sequences of pvcyrpa were obtained from seven isolates. Other sequences were extracted from a repository. Maximum likelihood phylogenetic trees, genetic diversity parameters, linkage disequilibrium (LD), and neutrality tests were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. In 22 sequences from Southern Mexico, two synonymous and 21 nonsynonymous mutations defined nine private haplotypes. These parasites had the highest LD-R2 index and the lowest nucleotide diversity compared to isolates from South America or Asia. The nucleotide diversity and Tajima’s D values varied across the coding gene. The exon-1 sequence had greater diversity and Rm values than those of exon-2. Exon-1 had significant positive values for Tajima’s D, β-α values, and for the Z (HA: dN > dS) and MK tests. These patterns were similar for parasites of different origin. The polymorphic amino acid residues at PvCyRPA resembled the conformational B-cell peptides reported in PfCyRPA. Diversity at pvcyrpa exon-1 is caused by mutation and recombination. This seems to be maintained by balancing selection, likely due to selective immune pressure, all of which merit further study.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. 850-854 ◽  
Author(s):  
Tyler N. Starr ◽  
Allison J. Greaney ◽  
Amin Addetia ◽  
William W. Hannon ◽  
Manish C. Choudhary ◽  
...  

Antibodies are a potential therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the risk of the virus evolving to escape them remains unclear. Here we map how all mutations to the receptor binding domain (RBD) of SARS-CoV-2 affect binding by the antibodies in the REGN-COV2 cocktail and the antibody LY-CoV016. These complete maps uncover a single amino acid mutation that fully escapes the REGN-COV2 cocktail, which consists of two antibodies, REGN10933 and REGN10987, targeting distinct structural epitopes. The maps also identify viral mutations that are selected in a persistently infected patient treated with REGN-COV2 and during in vitro viral escape selections. Finally, the maps reveal that mutations escaping the individual antibodies are already present in circulating SARS-CoV-2 strains. These complete escape maps enable interpretation of the consequences of mutations observed during viral surveillance.


Gene ◽  
1998 ◽  
Vol 211 (1) ◽  
pp. 177-185 ◽  
Author(s):  
Philippe Eldin de Pécoulas ◽  
Leonardo K Basco ◽  
Rachida Tahar ◽  
Taoufik Ouatas ◽  
André Mazabraud

Sign in / Sign up

Export Citation Format

Share Document