cellobiose dehydrogenase
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 35)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 73 ◽  
pp. 205-212
Author(s):  
Stefan Scheiblbrandner ◽  
Florian Csarman ◽  
Roland Ludwig

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Do Huu Nghi ◽  
Harald Kellner ◽  
Enrico Büttner ◽  
Le Mai Huong ◽  
Le Xuan Duy ◽  
...  

AbstractFrom the biotechnological viewpoint, the enzymatic disintegration of plant lignocellulosic biomass is a promising goal since it would deliver fermentable sugars for the chemical sector. Cellobiose dehydrogenase (CDH) is a vital component of the extracellular lignocellulose-degrading enzyme system of fungi and has a great potential to improve catalyst efficiency for biomass processing. In the present study, a CDH from a newly isolated strain of the agaricomycete Coprinellus aureogranulatus (CauCDH) was successfully purified with a specific activity of 28.9 U mg−1. This pure enzyme (MW = 109 kDa, pI = 5.4) displayed the high oxidative activity towards β-1–4-linked oligosaccharides. Not least, CauCDH was used for the enzymatic degradation of rice straw without chemical pretreatment. As main metabolites, glucose (up to 165.18 ± 3.19 mg g−1), xylose (64.21 ± 1.22 mg g−1), and gluconic acid (5.17 ± 0.13 mg g−1) could be identified during the synergistic conversion of this raw material with the fungal hydrolases (e.g., esterase, cellulase, and xylanase) and further optimization by using an RSM statistical approach.


Author(s):  
Justyna Sulej ◽  
Magdalena Jaszek ◽  
Monika Osińska-Jaroszuk ◽  
Anna Matuszewska ◽  
Renata Bancerz ◽  
...  

AbstractPolysaccharides are biopolymers composed of simple sugars like glucose, galactose, mannose, fructose, etc. The major natural sources for the production of polysaccharides include plants and microorganisms. In the present work, four bacterial and two fungal polysaccharides (PS or EPS) were used for the modification and preservation of Pycnoporus sanguineus cellobiose dehydrogenase (CDH) activity. It was found that the presence of polysaccharide preparations clearly enhanced the stability of cellobiose dehydrogenase compared to the control value (4 °C). The highest stabilization effect was observed for CDH modified with Rh110EPS. Changes in the optimum pH in the samples of CDH incubated with the chosen polysaccharide modifiers were evidenced as well. The most significant effect was observed for Rh24EPS and Cu139PS (pH 3.5). Cyclic voltammetry used for the analysis of electrochemical parameters of modified CDH showed the highest peak values after 30 days of incubation with polysaccharides at 4 °C. In summary, natural polysaccharides seem to be an effective biotechnological tool for the modification of CDH activity to increase the possibilities of its practical applications in many fields of industry.


Author(s):  
Andreas F. Geiss ◽  
Thomas M. B. Reichhart ◽  
Barbara Pejker ◽  
Esther Plattner ◽  
Peter L. Herzog ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lena Wohlschlager ◽  
Florian Csarman ◽  
Hucheng Chang ◽  
Elisabeth Fitz ◽  
Bernhard Seiboth ◽  
...  

Abstract Background Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. While homologous expression is time-consuming and the prokaryote Escherichia coli is not suitable for expression of the two-domain flavocytochrome, the yeast Pichia pastoris is hyperglycosylating the enzyme. Fungal expression hosts like Aspergillus niger and Trichoderma reesei were successfully used to express CDH from the ascomycete Corynascus thermophilus. This study describes the expression of basidiomycetes PcCDH in T. reesei (PcCDHTr) and the detailed comparison of its molecular, catalytic and electrochemical properties in comparison with PcCDH expressed by P. chrysosporium and P. pastoris (PcCDHPp). Results PcCDHTr was recombinantly produced with a yield of 600 U L−1 after 4 days, which is fast compared to the secretion of the enzyme by P. chrysosporium. PcCDHTr and PcCDH were purified to homogeneity by two chromatographic steps. Both enzymes were comparatively characterized in terms of molecular and catalytic properties. The pH optima for electron acceptors are identical for PcCDHTr and PcCDH. The determined FAD cofactor occupancy of 70% for PcCDHTr is higher than for other recombinantly produced CDHs and its catalytic constants are in good accordance with those of PcCDH. Mass spectrometry showed high mannose-type N-glycans on PcCDH, but only single N-acetyl-d-glucosamine additions at the six potential N-glycosylation sites of PcCDHTr, which indicates the presence of an endo-N-acetyl-β-d-glucosaminidase in the supernatant. Conclusions Heterologous production of PcCDHTr is faster and the yield higher than secretion by P. chrysosporium. It also does not need a cellulose-based medium that impedes efficient production and purification of CDH by binding to the polysaccharide. The obtained high uniformity of PcCDHTr glycoforms will be very useful to investigate electron transfer characteristics in biosensors and biofuel cells, which are depending on the spatial restrictions inflicted by high-mannose N-glycan trees. The determined catalytic and electrochemical properties of PcCDHTr are very similar to those of PcCDH and the FAD cofactor occupancy is good, which advocates T. reesei as expression host for engineered PcCDH for biosensors and biofuel cells.


Sign in / Sign up

Export Citation Format

Share Document