scholarly journals Sealer penetration in the dentinal tubules: A confocal laser scanning microscopy study

Endodontology ◽  
2021 ◽  
Vol 33 (2) ◽  
pp. 92
Author(s):  
Sanjana Khullar ◽  
Anurag Aggarwal ◽  
Harleen Chhina ◽  
Tamanpreet Kaur ◽  
Mehak Sharma ◽  
...  
2021 ◽  
Vol 11 (8) ◽  
pp. 3403
Author(s):  
Shlomo Elbahary ◽  
Sohad Haj Yahya ◽  
Cemre Koç ◽  
Hagay Shemesh ◽  
Eyal Rosen ◽  
...  

Following furcal perforation, bacteria may colonize the defect and cause inflammation and periodontal destruction. This study used confocal laser scanning microscopy (CLSM) to evaluate Enterococcus faecalis colonization and proliferation in furcal perforations repaired with different materials. Furcal perforations created in 55 extracted human mandibular molars were repaired using either MTA-Angelus, Endocem, or Biodentine and coronally subjected to E. faecalis suspension for 21 days. The specimens were then stained using a LIVE/DEAD Viability Kit and visualized by CLSM. The minimum and maximum depths of bacterial penetration into the dentinal tubules were 159 and 1790 μM, respectively, with a mean of 713 μM. There were significantly more live than dead bacteria inside the dentinal tubules (p = 0.0023) in all groups, and all three repair materials exhibited a similarly sized stained area (p = 0.083). However, there were significant differences in the numbers of dead bacteria at the circumference of the perforation defect (p = 0.0041), with a significantly higher ratio of live to dead bacteria in the MTA-Angelus group (p = 0.001). Following perforation repair, bacteria may colonize the interface between the repair material and dentin and may penetrate through the dentinal tubules. The type of repair material has a significant effect on the viability of the colonizing bacteria.


2020 ◽  
Vol 10 (8) ◽  
pp. 761
Author(s):  
Narcisa Mandras ◽  
Mario Alovisi ◽  
Janira Roana ◽  
Paola Crosasso ◽  
Anna Luganini ◽  
...  

Confocal laser scanning microscopy (CLSM) was used to evaluate the antibacterial effect and depth of action of a novel clarithromycin-containing triple antibiotic mixture, which was proposed for root canal disinfection in dental pulp regeneration. A previous study reported that this mixture had no tooth discoloration effects in vitro. After infection with Enterococcus faecalis for 3 weeks, the dentinal tubules in the cylindrical root specimens were exposed to different antibiotic mixtures: ciprofloxacin, metronidazole and minocycline (3-MIX); ciprofloxacin, metronidazole and clarithromycin (3-MIXC) and ciprofloxacin and metronidazole (2-MIX). Each antibiotic formulation was mixed with macrogol (MG) or hyaluronic acid (HA) vehicles. CLSM and viability staining were used to quantitatively analyze the mean depth of the antibacterial effect and the proportions of dead and live bacteria inside the dentinal tubules. The 3-MIX and 3-MIXC demonstrated a similar depth of action. The mean proportion of dead bacteria was similar in the 3-MIX and 3-MIXC groups, and both were statistically higher than that of 2-MIX (p = 0.014). Each antibiotic mixture showed a higher bactericidal efficacy if conveyed with HA, compared to MG (3-MIX, p = 0.019; 3-MIXC, p = 0.013 and 2-MIX, p = 0.0125). The depth of action and the antibacterial efficacy of 3-MIXC seemed comparable with 3-MIX.


Sign in / Sign up

Export Citation Format

Share Document