Harvesting MDT Data: Radio Environment Maps for Coverage Analysis in Cellular Networks

Author(s):  
Ana Galindo-Serrano ◽  
Berna Sayrac ◽  
Sana Ben Jemaa ◽  
Janne Riihijärvi ◽  
Petri Mähönen
2021 ◽  
Vol 11 (7) ◽  
pp. 2910
Author(s):  
Paweł Kaniewski ◽  
Janusz Romanik ◽  
Edward Golan ◽  
Krzysztof Zubel

In this paper, we present the concept of the Radio Environment Map (REM) designed to ensure electromagnetic situational awareness of cognitive radio networks. The map construction techniques based on spatial statistics are presented. The results of field tests done for Ultra High Frequency (UHF) range with different numbers of sensors are shown. Exemplary maps with selected interpolation techniques are presented. Control points where the signal from licensed users is correctly estimated are identified. Finally, the map quality is assessed, and the most promising interpolation techniques are selected.


2014 ◽  
Vol 53 ◽  
pp. 62-72 ◽  
Author(s):  
Liljana Gavrilovska ◽  
Jaap van de Beek ◽  
Yong Xie ◽  
Erik Lidström ◽  
Janne Riihijärvi ◽  
...  

Author(s):  
Seyed Mohammad Azimi-Abarghouyi ◽  
Behrooz Makki ◽  
Martin Haenggi ◽  
Masoumeh Nasiri-Kenari ◽  
Tommy Svensson

2019 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Jie Yang ◽  
Ziyu Pan ◽  
Lihong Guo

Due to the dense deployment of base stations (BSs) in heterogeneous cellular networks (HCNs), the energy efficiency (EE) of HCN has attracted the attention of academia and industry. Considering its mathematical tractability, the Poisson point process (PPP) has been employed to model HCNs and analyze their performance widely. The PPP falls short in modeling the effect of interference management techniques, which typically introduces some form of spatial mutual exclusion among BSs. In PPP, all the nodes are independent from each other. As such, PPP may not be suitable to model networks with interference management techniques, where there exists repulsion among the nodes. Considering this, we adopt the Matérn hard-core process (MHCP) instead of PPP, in which no two nodes can be closer than a repulsion radius from one another. In this paper, we study the coverage performance and EE of a two-tier HCN modelled by Matérn hard-core process (MHCP); we abbreviate this kind of two-tier HCN as MHCP-MHCP. We first derive the approximate expression of coverage probability of MHCP-MHCP by extending the approximate signal to interference ratio analysis based on the PPP (ASAPPP) method to multi-tier HCN. The concrete SIR gain of the MHCP model relative to the PPP model is derived through simulation and data fitting. On the basis of coverage analysis, we derive and formulate the EE of MHCP-MHCP network. Simulation results verify the correctness of our theoretical analysis and show the performance difference between the MHCP-MHCP and PPP modelled network.


Sign in / Sign up

Export Citation Format

Share Document